September/October 2017 – Vol. 30 No. 1

Activity Mania, This Is Not!

Posted: Friday, April 8th, 2016

by Terry Shanahan

In preparation for the summer 2015 Southern California K-8 NGSS Early Implementation Institute in Vista, our grade 2 cadre of science educators from elementary, secondary, and the university, planned a week of science investigations around matter and its interactions. Of course, we began our planning with the question, “What would you expect a second grader to know about matter?” After our quick write, we began our conceptual flow, using post-its for each of our statements. We then checked our conceptual flow against “A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas”. Had we left out any important concepts? Our biggest idea became: Matter is observable and it is not created or destroyed even as it changes form. Our conceptual flow moved from left to right: concrete to abstract. Our smaller ideas and the concepts we found in the Framework document later became the guiding statement for each day of our institute:

  • Monday: Matter has observable properties;
  • Tuesday: Different properties are suited to different purposes;
  • Wednesday: Properties of matter can be used to identify/classify materials;
  • Thursday: Heating and cooling of substances cause changes that can be observed; and
  • Friday: Objects can be built from smaller parts.

So each day’s lessons would connect to the concept of the day.



Once we had our concepts and our guiding statements for each day, the team met to brainstorm investigations that would lead participants to understand the big ideas of matter and its interactions. As we have been teaching physical science topics for quite a few years now, coming up with investigations was not a problem. We each contributed to the list for each day of the institute. I make it sound simple but we actually had 4 different iterations of the weekly plan before we were happy with the flow of the concepts. Because this institute was for second grade, we wanted to use familiar materials for our matter lessons and decided that metals best fit our need. Metals gave us the phenomena we needed to engage our participants in a discussion of matter and its interactions. Consequently, most of our investigations centered on the properties of metals. Every day of our plan was filled with fun, engaging activities that we were certain our participants would enjoy.

But how could we provide the participants with rich opportunities to learn about matter—to move beyond “activity mania”—doing activities just for the fun of them? What we needed was the Science and Engineering Practices from the Next Generation Science Standards (NGSS). As we looked at the NGSS Performance Expectations for Structure and Properties of Matter (PS1) in grade 2, we found:

  • Plan and Conduct an Investigation
  • Analyze Data
  • Construct an Evidence Based Account (Construct Explanations)
  • Construct an Argument from Evidence

Our investigation of observing properties of metals started with sorting some samples, looking for patterns followed by using the different properties of metals (color, texture, luster, malleability, and hardness) to classify and sort unknown metal objects. The grade 2 participants analyzed data from investigations of the properties of metals to determine which of the properties made them appropriate for household uses.


One of the metals the participants observed was copper. In observing properties of copper pennies, participants planned and conducted an investigation to observe which common household materials caused a change in the pennies. The cadre team had planned to investigate putting pennies in a salt and vinegar solution to observe a change in the pennies. The participants spontaneously started asking questions about which liquids on the table might cause a change in the pennies. The excitement in the room was contagious as the participants asked questions and shared their ideas with their groups while more and more baggies with pennies and liquids were assembled and observed.

The participants observed a metal ball that fit through a ring but, after being heated, it could no longer fit into the space. When the metal ball cooled and could again fit into the ring, the participants wrote their observations in their science notebooks. They constructed an argument from evidence that the change caused by heating of metals can be reversed.


The participants’ science notebooks became filled with observations and data that they used to construct explanations. After observing the physical and chemical properties of metals, participants observed properties of sugar and salt and explained why heating these produced different results. The participants were engaged in scientific reasoning and communicating their ideas with their group members.

One investigation that spanned several days was related to the property of density. After the participants investigated the density of metals, they were given an engineering challenge to create a cork sinker that would neither float nor sink but “flink” with neutral buoyancy. In their groups, the participants discussed the constraints and criteria posed in the problem to create a solution, using prior knowledge and properties of materials. They brought materials from home or from a nearby store to create their cork flink. When the day arrived for testing their cork design, the participants were excited and nervous. Those groups whose cork sank had to quickly diagnose which property of matter caused the sinking and they redesigned their flink. All groups were eventually successful. During their engineering challenge, they had planned and conducted an investigation, analyzed data, constructed explanations and argued from evidence.


Embedding the Science and Engineering Practices into the institute lessons required some thoughtful planning and purposeful teacher questioning to engage the participants in sense-making. Participants struggled with the concepts while they discussed their ideas with their group members. They took ownership of their learning through the Science and Engineering Practices.

Activity mania, this was not!

Terry Shanahan, EdD, works through UC-Irvine, and can be reached at

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply


CSTA Is Now Accepting Nominations for Board Members

Posted: Friday, November 17th, 2017

Current, incoming, and outgoing CSTA Board of Directors at June 3, 2017 meeting.

Updated 7:25 pm, Nov. 17, 2017

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There are time and energy commitments, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interested in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.