September 2016 – Vol. 29 No. 1

Activity Mania, This Is Not!

Posted: Friday, April 8th, 2016

by Terry Shanahan

In preparation for the summer 2015 Southern California K-8 NGSS Early Implementation Institute in Vista, our grade 2 cadre of science educators from elementary, secondary, and the university, planned a week of science investigations around matter and its interactions. Of course, we began our planning with the question, “What would you expect a second grader to know about matter?” After our quick write, we began our conceptual flow, using post-its for each of our statements. We then checked our conceptual flow against “A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas”. Had we left out any important concepts? Our biggest idea became: Matter is observable and it is not created or destroyed even as it changes form. Our conceptual flow moved from left to right: concrete to abstract. Our smaller ideas and the concepts we found in the Framework document later became the guiding statement for each day of our institute:

  • Monday: Matter has observable properties;
  • Tuesday: Different properties are suited to different purposes;
  • Wednesday: Properties of matter can be used to identify/classify materials;
  • Thursday: Heating and cooling of substances cause changes that can be observed; and
  • Friday: Objects can be built from smaller parts.

So each day’s lessons would connect to the concept of the day.



Once we had our concepts and our guiding statements for each day, the team met to brainstorm investigations that would lead participants to understand the big ideas of matter and its interactions. As we have been teaching physical science topics for quite a few years now, coming up with investigations was not a problem. We each contributed to the list for each day of the institute. I make it sound simple but we actually had 4 different iterations of the weekly plan before we were happy with the flow of the concepts. Because this institute was for second grade, we wanted to use familiar materials for our matter lessons and decided that metals best fit our need. Metals gave us the phenomena we needed to engage our participants in a discussion of matter and its interactions. Consequently, most of our investigations centered on the properties of metals. Every day of our plan was filled with fun, engaging activities that we were certain our participants would enjoy.

But how could we provide the participants with rich opportunities to learn about matter—to move beyond “activity mania”—doing activities just for the fun of them? What we needed was the Science and Engineering Practices from the Next Generation Science Standards (NGSS). As we looked at the NGSS Performance Expectations for Structure and Properties of Matter (PS1) in grade 2, we found:

  • Plan and Conduct an Investigation
  • Analyze Data
  • Construct an Evidence Based Account (Construct Explanations)
  • Construct an Argument from Evidence

Our investigation of observing properties of metals started with sorting some samples, looking for patterns followed by using the different properties of metals (color, texture, luster, malleability, and hardness) to classify and sort unknown metal objects. The grade 2 participants analyzed data from investigations of the properties of metals to determine which of the properties made them appropriate for household uses.


One of the metals the participants observed was copper. In observing properties of copper pennies, participants planned and conducted an investigation to observe which common household materials caused a change in the pennies. The cadre team had planned to investigate putting pennies in a salt and vinegar solution to observe a change in the pennies. The participants spontaneously started asking questions about which liquids on the table might cause a change in the pennies. The excitement in the room was contagious as the participants asked questions and shared their ideas with their groups while more and more baggies with pennies and liquids were assembled and observed.

The participants observed a metal ball that fit through a ring but, after being heated, it could no longer fit into the space. When the metal ball cooled and could again fit into the ring, the participants wrote their observations in their science notebooks. They constructed an argument from evidence that the change caused by heating of metals can be reversed.


The participants’ science notebooks became filled with observations and data that they used to construct explanations. After observing the physical and chemical properties of metals, participants observed properties of sugar and salt and explained why heating these produced different results. The participants were engaged in scientific reasoning and communicating their ideas with their group members.

One investigation that spanned several days was related to the property of density. After the participants investigated the density of metals, they were given an engineering challenge to create a cork sinker that would neither float nor sink but “flink” with neutral buoyancy. In their groups, the participants discussed the constraints and criteria posed in the problem to create a solution, using prior knowledge and properties of materials. They brought materials from home or from a nearby store to create their cork flink. When the day arrived for testing their cork design, the participants were excited and nervous. Those groups whose cork sank had to quickly diagnose which property of matter caused the sinking and they redesigned their flink. All groups were eventually successful. During their engineering challenge, they had planned and conducted an investigation, analyzed data, constructed explanations and argued from evidence.


Embedding the Science and Engineering Practices into the institute lessons required some thoughtful planning and purposeful teacher questioning to engage the participants in sense-making. Participants struggled with the concepts while they discussed their ideas with their group members. They took ownership of their learning through the Science and Engineering Practices.

Activity mania, this was not!

Terry Shanahan, EdD, works through UC-Irvine, and can be reached at

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply


California Science Assessment Update

Posted: Wednesday, October 12th, 2016

by Jessica Sawko

In June 2016 California submitted a waiver application to discontinue using the old CST (based on 1998 standards) and conduct two years of pilot and field tests (in spring 2017 and 2018, respectively) of the new science assessment designed to support our state’s current science standards (California Next Generation Science Standards (CA-NGSS) adopted in 2013). The waiver was requested because no student scores will be provided as a part of the pilot and field tests. The CDE received a response from the U.S. Department of Education (ED) on September 30, 2016, which provides the CDE the opportunity to resubmit a revised waiver request within 60 days. The CDE will be revising the waiver request and resubmitting as ED suggested.

At its October 2016 North/South Assessment meetings CDE confirmed that there will be no administration of the old CST in the spring of 2017. (An archive of the meeting is available at Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Some ways to celebrate the 100th anniversary of the National Park Service in your classroom

Posted: Thursday, September 22nd, 2016

by Carol Peterson

1) To celebrate the 100th anniversary of the National Park Service, Google has put together a collection of virtual tours combining 360-degree video, panoramic photos and expert narration. It’s called “The Hidden Worlds of the National Parks” and is accessible right from the browser. You can choose from one of five different locales, including the Kenai Fjords in Alaska and Bryce Canyon in Utah, and get a guided “tour” from a local park ranger. Each one has a few virtual vistas to explore, with documentary-style voiceovers and extra media hidden behind clickable thumbnails. Ideas are included for use in classrooms. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2016 Award Recipients – Join CSTA in Honoring Their Accomplishments

Posted: Thursday, September 22nd, 2016

CSTA is pleased to announce the winners of the 2016 CSTA Awards for Distinguished Contributions, Margaret Nicholson Distinguished Service Award, 2014 and 2015 PAEMST-Science recipients from California, and the 2016 California PAEMST Finalists. The following individuals and organizations will be honored during the 2016 California Science Education Conference  on October 21- 23 in Palm Springs. This year’s group of awardees are truly outstanding. Please join us in congratulating them!

Margaret Nicholson Distinguished Service Award

John Keller

John Keller

The Margaret Nicholson Distinguished Service Award honors an individual who has made a significant contribution to science education in the state and who, through years of leadership and service, has truly made a positive impact on the quality of science teaching. This year’s recipient is John Keller, Ph.D. Dr. Keller is Associate Professor, Cal Poly San Luis Obispo and Co-Director, Center for Engineering, Science, and Mathematics Education, Cal Poly San Luis Obispo. In her letter of recommendation, SDSU science education faculty and former CSTA board member Donna Ross wrote: “He brings people together who share the desire to make a difference in the development and implementation of programs for science teaching. Examples of these projects include the Math and Science Teaching Initiative (MSTI), Noyce Scholars Program, Western Regional Noyce Initiative, and the Science Teacher and Researcher (STAR) program.” Through his work, he has had a dramatic impact on science teacher education, both preservice and in-service, in California, the region, and the country. He developed and implemented the STEM Teacher and Researcher Program which aims to produce excellent K-12 STEM teachers by providing aspiring teachers with opportunities to do authentic research while helping them translate their research experience into classroom practice. SFSU faculty member Larry Horvath said it best in his letter:“John Keller exemplifies the best aspects of a scientist, science educator, and mentor. His contributions to science education in the state of California are varied, significant, and I am sure will continue well into the future.” Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

NGSS: Making Your Life Easier

Posted: Tuesday, September 20th, 2016

by Peter A’hearn

Wait… What?

NGSS is a big shift. Teachers need to learn new content, figure out how this whole engineering thing relates to science, and develop new unit and lesson plans. How could NGSS possibly make life easier?

The idea that NGSS could make our lives easier came to me during the California State NGSS Rollout #1 Classroom Example lesson on chromatography. I have since done this lesson with high school chemistry students and it made me think back to having my own students do chromatography. I spent lots of time preparing to make sure the experiment went well and achieved the “correct” result. I pre-prepared the solutions and organized and prepped the materials. I re-wrote and re-wrote again the procedure so there was no way a kid could get it wrong. I spent 20 minutes before the lab modeling all of the steps in class, so there was no way to do it wrong. Except that it turns out there were many. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Celestial Highlights, September 2016

Posted: Tuesday, September 20th, 2016

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graph of evening planet setting times by Dr. Jeffrey L. Hunt 

Our evening twilight chart for September, depicting the sky about 40 minutes after sunset from SoCal, shows brilliant Venus remaining low, creeping from W to WSW and gaining a little altitude as the month progresses. Its close encounter within 2.5° N of Spica on Sept. 18 is best seen with binoculars to catch the star low in bright twilight. The brightest stars in the evening sky are golden Arcturus descending in the west, and blue-white Vega passing just north of overhead. Look for Altair and Deneb completing the Summer Triangle with Vega. The triangle of Mars-Saturn-Antares expands as Mars seems to hold nearly stationary in SSW as the month progresses, while Saturn and Antares slink off to the SW. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.