May/June 2017 – Vol. 29 No. 7

Backyard Mystery: Solving a Mystery with Science

Posted: Tuesday, October 7th, 2014

by Peggy G. Lemaux and Barbara Alonso


The Backyard Mystery curriculum was developed by Dr. Peggy G. Lemaux, and her assistant, Barbara Alonso, Science Communication Specialist, at the University of California, Berkeley. Dr. Jenne Stonaker at Stanford University also helped with the Backyard Mystery curriculum development. It was developed as a part of the project, “Collaborative Research Strategies: STEMware™ – Designing Immersive Biology Learning Simulations for Formal and Informal Settings”, funded by the National Science Foundation (NSF ITEST Award Number 0929717).

Research Background. The underlying reason for the creation of this curriculum was the fact that America’s youth are not currently armed with the necessary science, technology, engineering, and mathematics (STEM) skills to compete in today’s technology-driven workforce [1]. According to a 2014 study, there are 3.6 unemployed workers for every job in the United States [2], compared with only one unemployed STEM worker for two unfilled STEM jobs. Many jobs are going unfilled simply because of the need for individuals with an educational background in science, technology, engineering, and mathematics [3]. Middle and high school students are generally uninterested in STEM fields and have little appreciation of the fact that their lack of understanding of basic biology means they may be unable to make educated decisions in their daily lives [4].

Learning Research Questions. The motivation for this effort was an attempt to reignite middle school enthusiasm for science and math through interactive paper and physical activities. As we developed this curriculum, the challenge was to translate complex scientific procedures such as ELISA (Enzyme Linked Immunosorbent Assay), PCR (Polymerase Chain Reaction) and DNA (Deoxyribonucleic Acid) sequencing, into activities that were both engaging and informative. Using the backyard as the centerpiece of the curriculum was intentional, as we strived to make lessons and activities have personal meaning to participants. Focusing on elements with which they could relate, e.g., family pets, backyard gardens and tummy aches, make the activities real in their own lives, and give them a sense of how these scientific concepts affect their daily lives.

Curriculum development. Lessons in the Backyard Mystery curriculum focus on diseases, pathogens and the bioSTEM workforce and adhere to National Science Education Standards in Life Sciences. The original NSF award involved creating two curricula. The first was a “serious cybergame”, termed “Zombie Plague”, intended for high school players to explore real-world, STEM technologies and careers using biology-related game scenarios involving investigative science related to pathogen identification. The second curriculum, Backyard Mystery, focuses on the same topics but features interactive paper and physical activities, rather than cyber games and is intended for middle school participants in afterschool settings.

The Backyard Mystery Curriculum. The curriculum is designed in two formats, Expanded and Combined, to accommodate different afterschool learning situations. In the Expanded Lessons, there are three individual teaching sessions, where the goal is to engage participants deeply in the topics. It is divided into three stand-alone lessons to be completed sequentially in 40-50 minute sessions. In Expanded Lesson 2, both hands-on and paper-based activities are offered to allow for more flexibility and for parts to be repeated to give participants more exposure to content. In the Combined Lesson (~1-1.5 hours), simpler versions of the content is broken into three sections, which cover all major topics but in less detail. The curriculum also lends itself to classroom teachers, who might select certain handouts or activities to fit with their particular lesson plans.

Learning About Organisms. The first lesson (Expanded Lesson 1/Combined Lesson, Section 1) introduces participants to four different types of disease-causing organisms through a matching card game, “Culprit’s Spell”. Game cards have colorful images of fungi, parasites, viruses and bacteria and participants learn that certain traits can be used to identify each organism, but do not necessarily give clues to which organisms cause disease. Participants receive “in-training” badges representing different STEM careers.

The Backyard Mystery. In the second lesson (Expanded Lesson 2/Combined Lesson, Section 2) participants are introduced to four panels representing the Backyard.


Each panel has something that is “not right. The problem in each panel is caused by one of four organisms, or culprits, that were introduced in the Culprit’s Spell game. Participants will focus on one panel (depending on their interests) for the remainder of the lesson(s). For example, 4-H groups, interested in animal science, might focus on panels B or D.

“Cool Tools”. The group is then introduced to contemporary “Cool Tools”, used by scientists, to determine the ”culprit” causing the problem in the backyard. They learn about the tools by completing activities. Hands-on or paper-based activities, are used to teach about four “Cool Tool” technologies: PCR, ELISA, DNA Sequencing, and Morphology.


Each of four groups performs one of the “Cool Tools” activities concurrently. When completed, participants share what they learned about each technology in a “teach back”. After each activity is completed, each group gets a puzzle piece, associated with their panel and their “Cool Tool” and this piece contains code used in the next lesson to solve the mystery.

Revealing the Culprit. In the third lesson (Expanded Lesson 3/Combined Lesson, Section 3), participants are given a decoder to figure out the code in their puzzle pieces and learn which organism was the pathogen and responsible for the disease in their backyard panel. After the mystery is solved, participants get new badges, featuring a STEM career that matches the career associated with the identified pathogen, e.g., mycologist, virologist. They also use a “Jeopardy-type” game to explore career opportunities in STEM fields.

The lessons also feature a Math Box, with math questions related to the subject matter, Beyond the Backyard with online resources that participants can explore on their own and a Glossary with terms used in the lessons. The Curriculum is complimentary and is available here.  Check out other educational resources here.

Evaluation. Dr. Stonaker, one of the developers, has been extensively involved in curriculum development for summer and afterschool venues for middle school students. She used a course for middle school students at the San Jose Tech Museum to test the Combined Lesson activities with grades 4-7 students. That information was used to guide final development of the curriculum. We also used feedback from teacher workshops and from surveys distributed to individuals who download the curriculum to improve the curriculum. To date we have had 3,756 downloads of the Expanded curriculum and 4,617 downloads of the Combined curriculum. We are currently working with a film crew in Los Angeles to create videos to help illustrate how afterschool facilitators and teachers can use the curriculum.

[1]       Rising Above the Gathering Storm, Energizing and Employing America for a Brighter Economic Future. 2007. National Academy of Sciences, National Academy of Engineering, and Institute of Medicine of the National Academies. The National Academies Press, Washington, D.C.

[2]       STEM Help Wanted 2014

[3]       Engler, J. 2012. STEM Education Is the Key to the U.S.’s Economic Future. June 15, 2012. US News & World Reports.

[4] Lukin, K. 2013. Exciting middle and high school students about immunology: an easy, inquiry-based lesson. Immunologic Research 55: 201-209).

Peggy G. Lemaux is the Cooperative Extension Specialist and Barbara Alonso is the Science Communication Specialist, both at the University of California, Berkeley. Peggy is a member of CSTA.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

Leave a Reply


Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here:

Please contact Rosanne Luu at or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.