March/April 2017 – Vol. 29 No. 6

Cross Cutting to the Concepts (Or How My Own Use and Understanding of CCC’s Evolved)

Posted: Monday, June 20th, 2016

by Rob Sherriff 

Many of you have jumped into turning at least some of your lessons into NGSS three-dimensional (3D) lessons, or you may be using an NGSS lesson/unit from a training or workshop. The Disciplinary Core Ideas (DCIs) are similar to our old content standards, so for most, implementing the DCIs are the easiest to do. Similarly, for the SEPs, or science and engineering practices, many of you say, “That’s just good teaching!” Practices are the way students learn the science and NGSS incorporates a practice for each standard, but you will find that “practices build on practices.” If you used scientific inquiry for students to discover scientific principals as integral of your science program, you are probably viewing the SEPs as a way to refine what you were doing. That leaves Crosscutting Concepts (CCC), the part of 3D learning that has taken me the longest to wrap my head around on how to implement.  So, here is my CCC journey.  Implementing CCC’s in my learning sequences has increased my appreciation of the power of the CCC’s in causing my students to make connections to and between content DCI’s.

A First Step: Some background: I recognized that many of the CCC’s were present in the form of themes in the old 1990 standards, yet most of the time, many of us from that era usually forgot to include these “themes” in our instruction. I started by looking at the definition of CCC’s in the National Framework:

“Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas.” — NRC Framework p. 233.

Ok, but the quote didn’t quite answer a frequently asked question I’ve heard:  “Why equal treatment of CCCs–what is the rationale for making them so prominent as to be one third of the 3D learning of the NGSS?”  I needed to understand more about the purpose and the thinking of the writers of the NGSS in regards to the CCCs.  I went back to the CCC appendix and read how CCCs are mentioned in one form or another in many other documents that were used in the development of the NGSS such as “Science for all Americans”, “Benchmarks for Science Literacy” and in the “National Science Education Standards”.  Looking at these documents (yes, I still had most of them, the hardest part was finding where I put them!) I discovered that these ideas are meant to connect the various pieces of content in my student’s brains so that the science content makes more sense–a noble goal.

Perhaps it was the lack of professional development and instructional support specifically geared to include these old “Themes” that caused them to be so overlooked in the past. But with the NGSS, the writers explicitly wove the CCC’s into the Performance Expectations so they were imbedded into the standards and could not be left out.

Since I’m a member of a science content cadre team for the CA NGSS K-8 Early Implementation Initiative, I needed to make sure that the teachers who attend my content sessions didn’t miss the connections.  And to make it real, I knew that I had better try more CCC strategies out in my classroom first.

The Next Step:  Taking the time to really think about the meaning of each of the CCCs was important to me.  I decided to do a self-brainstorm, listing what each of the seven crosscutting concepts brought to mind as I read them.  It helped get me started, so you might want to try your own brainstorm as you read the CCCs below.  Find more details on each CCC in NGSS appendix G at

  • Patterns
  • Cause and effect.
  • Scale, proportion, and quantity.
  • Systems and system models.
  • Energy and matter.
  • Structure and function.
  • Stability and change.

A Third Step: CCCs can be posted in the classroom and referred to regularly during class discussions. At this point, just focusing on one CCC is appropriate. One way I’ve incorporated Cross Cutting Concepts is as a quick-write bell work by asking students for instance “How does our CCC Energy and Matter relate to _________ (the concept we are currently working on).” This has been quite interesting as the students shared many connections they made, going beyond those I’ve thought of, with various content connections from many branches of science. Making the connections has helped bridge the gap from prior knowledge to what the students are currently learning. Their assessments have shown that they deepened their understanding of the content. For example, using the CCCs helped students to more easily see the connections between the physics of energy connected to the energy flows in ecology. This in turn led to even more connections to energy conversions.

The CCCs have helped me to see some glaring misconceptions students have in regard to content and provides me with the opportunity to adjust my teaching.  For instance, after a phenomenon of melting ice on two different surfaces, I had students write about the CCC in regards to the interactions of Energy and Matter.  This was their first exposure to this topic.  Students wrote many interesting ideas (naïve and/or misconceptions) such as “the friction on the smoother metal block caused the ice to melt faster than on the non-metal block that was not quite as smooth.” Student ideas like these helped guide my teaching.  After many other opportunities for observations relating to the CCC of Energy and Matter, students were asked to reflect on their understanding of the phenomena. Their responses included “The transfer of energy in a metal is greater than in a non-conductor and so the ice melted faster on the metal block.”   Wow, a simple formative assessment is born! Student ideas changed using a CCC reflection.  The conversations and reflections continued at a higher level throughout the year, with much more feedback from students in terms of connections they made that led to a deeper understanding of the content.

A Side Step:  I am implementing CCCs with a science content cadre team for the CA NGSS K-8 Early Implementation Initiative.  Providing professional development for content, we have used the same process.  We gave the teachers a pretest with CCC questions and then the post-test showed growth in their understanding of the content. Also, throughout the week with our teachers we had reflections, some were CCC questions.  From these, just like in my classroom, we used their answers to help adjust our week’s lesson plan. By the end of the week our teachers were giving much more detailed, connected answers showing either more confidence in the content or a deeper understanding in the content.

A Step Back:  So now we journey back to my initial question “Why equal treatment of CCCs as one third of 3D learning?”  To answer that question, we need to start with conversations and resources used to guide the development of the Framework for K-12 Science Education (a free PDF can be downloaded at amework-for-k-12-science-education-practices-crosscutting-concepts ) This Framework for K-12 Science Education explains the rationale for the NGSS and supports the latest research on how students learn.  One piece of that research says that “clustering and chunking,” also known as making connections in the brain, is crucial to learning and understanding.  The CCCs can provide the vehicle for helping students input new ideas into their knowledge base by relating these ideas through the CCCs to what they already know. This will assist in their storing of these ideas in their long-term memory.

A Final Step:  Again, “Why CCCs?”  Since the research on how students learn indicates that connections are everything, the CCCs help make connections within and among the science disciplines. These connections allowed one of my students to consider science in a new light.  For instance, she said, “I’ve always hated all science except life science but now I see that physics is connected to life science so I like physics too.”  In addition, the CCCs gave me access to student misconceptions early on in their learning better than anything else I have tried. It has truly changed my teaching as I monitor and adjust to student thinking.

CCCs also help teacher pedagogical understanding. Teachers in my Early Implementer cadre sessions reported that certain concepts, like gravity, were more difficult for them to help students connect to or understand.  In our sessions we made connections between life science and gravity (e.g., trees can only be so tall, blood pressure, insects walking on water) using lab activities. One teacher exclaimed, “This will make my gravity lessons more meaningful that ever before”.  In this case it was the synergistic connections provided by the use of 3D learning (CCC, DCI’s and SEPs combined) that made the learning powerful.

In addition, a friendly administrator once commented that having something to use to help guide their teachers to move to NGSS would be “a tremendous benefit.”

Someone Else’s Step: I found a definition that for me summed up what I was thinking about CCCs:

The CCC’s provide a bridge between disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas, and develop a coherent and scientifically based view of the world. 

  • adapted from Appendix G

Another great resource I use as a starting point to provide students with questions to help guide the use of CCCs and provide them with symbols to visualize CCCs is Peter A’Hearn’s website at

Why Step At All:  So why CCCs and for that matter why NGSS? For me, it can be simply answered with a quote from one of the last century’s educational leaders, John Dewey who expressed it clearly in 1944:  “If we teach today’s students as we taught yesterday’s then we rob them of tomorrow.”

Rob Sherriff is a middle school teacher, Science Expert Panel member, and a member of CSTA.

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply


California Science Curriculum Framework Now Available

Posted: Tuesday, March 14th, 2017

The pre-publication version of the new California Science Curriculum Framework is now available for download. This publication incorporates all the edits that were approved by the State Board of Education in November 2016 and was many months in the making. Our sincere thanks to the dozens of CSTA members were involved in its development. Our appreciation is also extended to the California Department of Education, the State Board of Education, the Instructional Quality Commission, and the Science Curriculum Framework and Evaluation Criteria Committee and their staff for their hard work and dedication to produce this document and for their commitment to the public input process. To the many writers and contributors to the Framework CSTA thanks you for your many hours of work to produce a world-class document.

For tips on how to approach this document see our article from December 2016: California Has Adopted a New Science Curriculum Framework – Now What …? If you would like to learn more about the Framework, consider participating in one of the Framework Launch events (a.k.a. Rollout #4) scheduled throughout 2017.

The final publication version (formatted for printing) will be available in July 2017. This document will not be available in printed format, only electronically.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for CSTA Awards Nominations

Posted: Monday, March 13th, 2017

The 2017 Award Season is now open! One of the benefits of being a CSTA member is your eligibility for awards as well as your eligibility to nominate someone for an award. CSTA offers several awards and members may nominate individuals and organizations for the Future Science Teacher Award, the prestigious Margaret Nicholson Distinguished Service Award, and the CSTA Distinguished Contributions Award (organizational award). May 9, 2017 is the deadline for nominations for these awards. CSTA believes that the importance of science education cannot be overstated. Given the essential presence of the sciences in understanding the past and planning for the future, science education remains, and will increasingly be one of the most important disciplines in education. CSTA is committed to recognizing and encouraging excellence in science teaching through the presentation of awards to science educators and organizations who have made outstanding contributions in science education in the state and who are poised to continue the momentum of providing high quality, relevant science education into the future. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for Volunteers – CSTA Committees

Posted: Monday, March 13th, 2017


CSTA is now accepting applications from regular, preservice, and retired members to serve on our volunteer committees! CSTA’s all-volunteer board of directors invites you to consider maximizing your member experience by volunteering for CSTA. CSTA committee service offers you the opportunity to share your expertise, learn a new skill, or do something you love to do but never have the opportunity to do in your regular day. CSTA committee volunteers do some pretty amazing things: Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

A Friend in CA Science Education Now at CSTA Region 1 Science Center

Posted: Monday, March 13th, 2017

by Marian Murphy-Shaw

If you attended an NGSS Rollout phase 1-3 or CDE workshops at CSTA’s annual conference you may recall hearing from Chris Breazeale when he was working with the CDE. Chris has relocated professionally, with his passion for science education, and is now the Executive Director at the Explorit Science Center, a hands-on exploration museum featuring interactive STEM exhibits located at the beautiful Mace Ranch, 3141 5th St. in Davis, CA. Visitors can “think it, try it, and explorit” with a variety of displays that allow visitors to “do science.” To preview the museum, or schedule a classroom visit, see Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.

Learning to Teach in 3D

Posted: Monday, March 13th, 2017

by Joseph Calmer

Probably like you, NGSS has been at the forefront of many department meetings, lunch conversations, and solitary lesson planning sessions. Despite reading the original NRC Framework, the Ca Draft Frameworks, and many CSTA writings, I am still left with the question: “what does it actually mean for my classroom?”

I had an eye-opening experience that helped me with that question. It came out of a conversation that I had with a student teacher. It turns out that I’ve found the secret to learning how to teach with NGSS: I need to engage in dialogue about teaching with novice teachers. I’ve had the pleasure of teaching science in some capacity for 12 years. During that time pedagogy and student learning become sort of a “hidden curriculum.” It is difficult to plan a lesson for the hidden curriculum; the best way is to just have two or more professionals talk and see what emerges. I was surprised it took me so long to realize this epiphany. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: