May/June 2017 – Vol. 29 No. 7

Cross Cutting to the Concepts (Or How My Own Use and Understanding of CCC’s Evolved)

Posted: Monday, June 20th, 2016

by Rob Sherriff 

Many of you have jumped into turning at least some of your lessons into NGSS three-dimensional (3D) lessons, or you may be using an NGSS lesson/unit from a training or workshop. The Disciplinary Core Ideas (DCIs) are similar to our old content standards, so for most, implementing the DCIs are the easiest to do. Similarly, for the SEPs, or science and engineering practices, many of you say, “That’s just good teaching!” Practices are the way students learn the science and NGSS incorporates a practice for each standard, but you will find that “practices build on practices.” If you used scientific inquiry for students to discover scientific principals as integral of your science program, you are probably viewing the SEPs as a way to refine what you were doing. That leaves Crosscutting Concepts (CCC), the part of 3D learning that has taken me the longest to wrap my head around on how to implement.  So, here is my CCC journey.  Implementing CCC’s in my learning sequences has increased my appreciation of the power of the CCC’s in causing my students to make connections to and between content DCI’s.

A First Step: Some background: I recognized that many of the CCC’s were present in the form of themes in the old 1990 standards, yet most of the time, many of us from that era usually forgot to include these “themes” in our instruction. I started by looking at the definition of CCC’s in the National Framework:

“Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas.” — NRC Framework p. 233.

Ok, but the quote didn’t quite answer a frequently asked question I’ve heard:  “Why equal treatment of CCCs–what is the rationale for making them so prominent as to be one third of the 3D learning of the NGSS?”  I needed to understand more about the purpose and the thinking of the writers of the NGSS in regards to the CCCs.  I went back to the CCC appendix and read how CCCs are mentioned in one form or another in many other documents that were used in the development of the NGSS such as “Science for all Americans”, “Benchmarks for Science Literacy” and in the “National Science Education Standards”.  Looking at these documents (yes, I still had most of them, the hardest part was finding where I put them!) I discovered that these ideas are meant to connect the various pieces of content in my student’s brains so that the science content makes more sense–a noble goal.

Perhaps it was the lack of professional development and instructional support specifically geared to include these old “Themes” that caused them to be so overlooked in the past. But with the NGSS, the writers explicitly wove the CCC’s into the Performance Expectations so they were imbedded into the standards and could not be left out.

Since I’m a member of a science content cadre team for the CA NGSS K-8 Early Implementation Initiative, I needed to make sure that the teachers who attend my content sessions didn’t miss the connections.  And to make it real, I knew that I had better try more CCC strategies out in my classroom first.

The Next Step:  Taking the time to really think about the meaning of each of the CCCs was important to me.  I decided to do a self-brainstorm, listing what each of the seven crosscutting concepts brought to mind as I read them.  It helped get me started, so you might want to try your own brainstorm as you read the CCCs below.  Find more details on each CCC in NGSS appendix G at http://www.nextgenscience.org/sites/default/files/Appendix%20G%20-%20Crosscutting%20Concepts%20FINAL%20edited%204.10.13.pdf

  • Patterns
  • Cause and effect.
  • Scale, proportion, and quantity.
  • Systems and system models.
  • Energy and matter.
  • Structure and function.
  • Stability and change.

A Third Step: CCCs can be posted in the classroom and referred to regularly during class discussions. At this point, just focusing on one CCC is appropriate. One way I’ve incorporated Cross Cutting Concepts is as a quick-write bell work by asking students for instance “How does our CCC Energy and Matter relate to _________ (the concept we are currently working on).” This has been quite interesting as the students shared many connections they made, going beyond those I’ve thought of, with various content connections from many branches of science. Making the connections has helped bridge the gap from prior knowledge to what the students are currently learning. Their assessments have shown that they deepened their understanding of the content. For example, using the CCCs helped students to more easily see the connections between the physics of energy connected to the energy flows in ecology. This in turn led to even more connections to energy conversions.

The CCCs have helped me to see some glaring misconceptions students have in regard to content and provides me with the opportunity to adjust my teaching.  For instance, after a phenomenon of melting ice on two different surfaces, I had students write about the CCC in regards to the interactions of Energy and Matter.  This was their first exposure to this topic.  Students wrote many interesting ideas (naïve and/or misconceptions) such as “the friction on the smoother metal block caused the ice to melt faster than on the non-metal block that was not quite as smooth.” Student ideas like these helped guide my teaching.  After many other opportunities for observations relating to the CCC of Energy and Matter, students were asked to reflect on their understanding of the phenomena. Their responses included “The transfer of energy in a metal is greater than in a non-conductor and so the ice melted faster on the metal block.”   Wow, a simple formative assessment is born! Student ideas changed using a CCC reflection.  The conversations and reflections continued at a higher level throughout the year, with much more feedback from students in terms of connections they made that led to a deeper understanding of the content.

A Side Step:  I am implementing CCCs with a science content cadre team for the CA NGSS K-8 Early Implementation Initiative.  Providing professional development for content, we have used the same process.  We gave the teachers a pretest with CCC questions and then the post-test showed growth in their understanding of the content. Also, throughout the week with our teachers we had reflections, some were CCC questions.  From these, just like in my classroom, we used their answers to help adjust our week’s lesson plan. By the end of the week our teachers were giving much more detailed, connected answers showing either more confidence in the content or a deeper understanding in the content.

A Step Back:  So now we journey back to my initial question “Why equal treatment of CCCs as one third of 3D learning?”  To answer that question, we need to start with conversations and resources used to guide the development of the Framework for K-12 Science Education (a free PDF can be downloaded at http://www.nap.edu/catalog/1scinece3165/a-frscience amework-for-k-12-science-education-practices-crosscutting-concepts ) This Framework for K-12 Science Education explains the rationale for the NGSS and supports the latest research on how students learn.  One piece of that research says that “clustering and chunking,” also known as making connections in the brain, is crucial to learning and understanding.  The CCCs can provide the vehicle for helping students input new ideas into their knowledge base by relating these ideas through the CCCs to what they already know. This will assist in their storing of these ideas in their long-term memory.

A Final Step:  Again, “Why CCCs?”  Since the research on how students learn indicates that connections are everything, the CCCs help make connections within and among the science disciplines. These connections allowed one of my students to consider science in a new light.  For instance, she said, “I’ve always hated all science except life science but now I see that physics is connected to life science so I like physics too.”  In addition, the CCCs gave me access to student misconceptions early on in their learning better than anything else I have tried. It has truly changed my teaching as I monitor and adjust to student thinking.

CCCs also help teacher pedagogical understanding. Teachers in my Early Implementer cadre sessions reported that certain concepts, like gravity, were more difficult for them to help students connect to or understand.  In our sessions we made connections between life science and gravity (e.g., trees can only be so tall, blood pressure, insects walking on water) using lab activities. One teacher exclaimed, “This will make my gravity lessons more meaningful that ever before”.  In this case it was the synergistic connections provided by the use of 3D learning (CCC, DCI’s and SEPs combined) that made the learning powerful.

In addition, a friendly administrator once commented that having something to use to help guide their teachers to move to NGSS would be “a tremendous benefit.”

Someone Else’s Step: I found a definition that for me summed up what I was thinking about CCCs:

The CCC’s provide a bridge between disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas, and develop a coherent and scientifically based view of the world. 

  • adapted from Appendix G

http://www.nextgenscience.org/sites/default/files/Appendix%20G%20-%20Crosscutting%20Concepts%20FINAL%20edited%204.10.13.pdf

Another great resource I use as a starting point to provide students with questions to help guide the use of CCCs and provide them with symbols to visualize CCCs is Peter A’Hearn’s website at http://crosscutsymbols.weebly.com.

Why Step At All:  So why CCCs and for that matter why NGSS? For me, it can be simply answered with a quote from one of the last century’s educational leaders, John Dewey who expressed it clearly in 1944:  “If we teach today’s students as we taught yesterday’s then we rob them of tomorrow.”

Rob Sherriff is a middle school teacher, Science Expert Panel member, and a member of CSTA.

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here: https://www.surveymonkey.com/r/HappyAtoms

Please contact Rosanne Luu at rluu@wested.org or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.