May/June 2017 – Vol. 29 No. 7

Crosscutting Concepts Part 1: Patterns in K-2

Posted: Tuesday, January 6th, 2015

by Valerie Joyner

Cross Cut Symbol for Patterns. Used with permission from CrossCutSymbols.

Cross Cut Symbol for Patterns. Used with permission from CrossCutSymbols.

As early childhood science educators, we are beginning to explore and gain understanding about the Next Generation Science Standards (NGSS). We know that NGSS will require us to teach science through three dimensions: practices, disciplinary core ideas (i.e. content), and crosscutting concepts. In the past our main emphasis was teaching science through one or sometimes two dimensions with lessons focused on conveying factual content of physical, life, and earth/space sciences, with perhaps some practices added in (formerly known as science process skills). However, three-dimensional learning requires us to take an entirely new approach to science education, one that deliberately teaches with all dimensions.

This article will be the first in a series exploring crosscutting concepts and offering some ideas for applications in the primary grades. Crosscutting concepts “provide students with connections and intellectual tools that are related across the different areas of disciplinary content and can enrich the application of practices and their understanding of core ideas (NRC, 2012, pg. 233)”. In other words, these fundamental conceptual tools are necessary for students to learn effectively, and must be specifically nurtured and referenced throughout all grade levels in all disciplines. 

There are seven crosscutting concepts: 1) patterns, 2) cause and effect, 3) scale, proportion, and quantity, 4) systems and system models, 5) energy and matter: flows, cycles, and conservation, 6) structure and function, and 7) stability and change. All students will need explicit instruction in these crosscutting concepts and these concepts must never be omitted. Our first introduction will be to the concept of patterns. It’s little surprise patterns are embraced by NGSS as one of seven fundamental crosscutting concepts because they play a crucial practical role in early childhood science education. They can also be a powerful tool to awaken curiosity with great visuals, hands on interactions, and interesting details to observe, and make a great starting point for our discussion of how crosscutting can look in primary classrooms.

In classrooms currently, students study patterns in math, reading, writing, and social studies. As an early childhood educator you’ve seen the importance of finding and using patterns in the everyday lives of your students. When students discover patterns they begin to make sense of the world around them. Such patterns are everywhere and observing and learning from them is critical to science literacy. For example, students can observe patterns such as that the sun rises, then the sun sets. It is usually colder at night than in the daytime. Leaves bud in the spring, change colors in the fall, and fall in the winter. In NGSS the core primary crosscutting concept is that observed patterns can be explained.



True to the crosscutting ideal, the NGSS framework puts more clarity and emphasis on these ideas as unifying threads that tie knowledge together across the disciplines. When we use consistent words throughout our teaching to signal the fundamental crosscutting concepts like patterns, we strengthen students’ understanding by connecting knowledge between each subject.

In kindergarten, students study local weather to find patterns over time. They make qualitative observations about the weather like, “It is a sunny day,” and then quantify their observations by recording the number of rainy, cloudy, and snowy days. Through their observations and data collection patterns begin to emerge.

In 1st grade, students look at the patterns in the sky (sun, moon, and stars) and the amount of daylight throughout the year. They notice that the sun is in the sky in the day and stars appear at night. They can record data over time to reveal daylight and nighttime during different seasons of the year. For example: “It is dark when I have dinner in the winter, but it is light when I eat dinner in the summer”.

In 2nd grade, students look at the patterns in shapes and kinds of land and bodies of water and that water on Earth can be solid or liquid. They learn that lakes are surrounded by land and rivers have banks and that lakes freeze where it is very cold or dry up when there is too much sunshine and not enough rain.

Understanding patterns serves as a basis for core ideas and practices in science and engineering, and the importance of establishing this understanding in the primary classroom cannot be overstated. As young students begin to recognize patterns in the natural and man-made world they then use them to reveal different ways things are organized, understand and describe phenomena, and gather evidence to support their findings. We have the extraordinary opportunity in our primary science teaching to confer lifelong benefits by encouraging young minds to apply pattern understanding as a tool in all areas of life to seek further information and understanding.

Thank you for reading this introduction to the crosscutting concept of patterns. Take these ideas into your classroom today, share them with your colleagues, and collaborate to cultivate the habit of referencing patterns consistently wherever they appear in all subjects.

Look for the next article in the series on another of the seven crosscutting concepts. We’d love to hear your ideas, challenges, and experiences around introducing and reinforcing pattern understanding in your primary setting, so share any feedback in the comments or via email. What crosscutting concept would you like to see us cover next?

Written by Valerie Joyner

Valerie Joyner

Valerie Joyner is a retired elementary science educator and is a member of CSTA.

Leave a Reply


CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.