September/October 2017 – Vol. 30 No. 1

Crosscutting Concepts Part 1: Patterns in K-2

Posted: Tuesday, January 6th, 2015

by Valerie Joyner

Cross Cut Symbol for Patterns. Used with permission from CrossCutSymbols. http://crosscutsymbols.weebly.com/

Cross Cut Symbol for Patterns. Used with permission from CrossCutSymbols. http://crosscutsymbols.weebly.com/

As early childhood science educators, we are beginning to explore and gain understanding about the Next Generation Science Standards (NGSS). We know that NGSS will require us to teach science through three dimensions: practices, disciplinary core ideas (i.e. content), and crosscutting concepts. In the past our main emphasis was teaching science through one or sometimes two dimensions with lessons focused on conveying factual content of physical, life, and earth/space sciences, with perhaps some practices added in (formerly known as science process skills). However, three-dimensional learning requires us to take an entirely new approach to science education, one that deliberately teaches with all dimensions.

This article will be the first in a series exploring crosscutting concepts and offering some ideas for applications in the primary grades. Crosscutting concepts “provide students with connections and intellectual tools that are related across the different areas of disciplinary content and can enrich the application of practices and their understanding of core ideas (NRC, 2012, pg. 233)”. In other words, these fundamental conceptual tools are necessary for students to learn effectively, and must be specifically nurtured and referenced throughout all grade levels in all disciplines. 

There are seven crosscutting concepts: 1) patterns, 2) cause and effect, 3) scale, proportion, and quantity, 4) systems and system models, 5) energy and matter: flows, cycles, and conservation, 6) structure and function, and 7) stability and change. All students will need explicit instruction in these crosscutting concepts and these concepts must never be omitted. Our first introduction will be to the concept of patterns. It’s little surprise patterns are embraced by NGSS as one of seven fundamental crosscutting concepts because they play a crucial practical role in early childhood science education. They can also be a powerful tool to awaken curiosity with great visuals, hands on interactions, and interesting details to observe, and make a great starting point for our discussion of how crosscutting can look in primary classrooms.

In classrooms currently, students study patterns in math, reading, writing, and social studies. As an early childhood educator you’ve seen the importance of finding and using patterns in the everyday lives of your students. When students discover patterns they begin to make sense of the world around them. Such patterns are everywhere and observing and learning from them is critical to science literacy. For example, students can observe patterns such as that the sun rises, then the sun sets. It is usually colder at night than in the daytime. Leaves bud in the spring, change colors in the fall, and fall in the winter. In NGSS the core primary crosscutting concept is that observed patterns can be explained.

Advertisement

Advertisement

True to the crosscutting ideal, the NGSS framework puts more clarity and emphasis on these ideas as unifying threads that tie knowledge together across the disciplines. When we use consistent words throughout our teaching to signal the fundamental crosscutting concepts like patterns, we strengthen students’ understanding by connecting knowledge between each subject.

In kindergarten, students study local weather to find patterns over time. They make qualitative observations about the weather like, “It is a sunny day,” and then quantify their observations by recording the number of rainy, cloudy, and snowy days. Through their observations and data collection patterns begin to emerge.

In 1st grade, students look at the patterns in the sky (sun, moon, and stars) and the amount of daylight throughout the year. They notice that the sun is in the sky in the day and stars appear at night. They can record data over time to reveal daylight and nighttime during different seasons of the year. For example: “It is dark when I have dinner in the winter, but it is light when I eat dinner in the summer”.

In 2nd grade, students look at the patterns in shapes and kinds of land and bodies of water and that water on Earth can be solid or liquid. They learn that lakes are surrounded by land and rivers have banks and that lakes freeze where it is very cold or dry up when there is too much sunshine and not enough rain.

Understanding patterns serves as a basis for core ideas and practices in science and engineering, and the importance of establishing this understanding in the primary classroom cannot be overstated. As young students begin to recognize patterns in the natural and man-made world they then use them to reveal different ways things are organized, understand and describe phenomena, and gather evidence to support their findings. We have the extraordinary opportunity in our primary science teaching to confer lifelong benefits by encouraging young minds to apply pattern understanding as a tool in all areas of life to seek further information and understanding.

Thank you for reading this introduction to the crosscutting concept of patterns. Take these ideas into your classroom today, share them with your colleagues, and collaborate to cultivate the habit of referencing patterns consistently wherever they appear in all subjects.

Look for the next article in the series on another of the seven crosscutting concepts. We’d love to hear your ideas, challenges, and experiences around introducing and reinforcing pattern understanding in your primary setting, so share any feedback in the comments or via email. What crosscutting concept would you like to see us cover next?

Written by Valerie Joyner

Valerie Joyner

Valerie Joyner is a retired elementary science educator and is a member of CSTA.

Leave a Reply

LATEST POST

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.

News and Happenings in CSTA’s Region 1 – Fall 2017

Posted: Tuesday, August 29th, 2017

by Marian Murphy-Shaw

Cal

This month I was fortunate enough to hear about some new topics to share with our entire region. Some of you may access the online or newsletter options, others may attend events in person that are nearer to you. Long time CSTA member and environmental science educator Mike Roa is well known to North Bay Area teachers for his volunteer work sharing events and resources. In this month’s Region 1 updates I am happy to make a few of the options Mike offers available to our region. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.