March/April 2017 – Vol. 29 No. 6

Defining Scientific Literacy for Informal Science Education

Posted: Wednesday, December 14th, 2016

by Martin Smith, Steven Worker, Andrea Ambrose, Lynn Schmitt-McQuitty, Kelley Brian, Emily Schoenfelder

Introduction

Scientific literacy is an important educational and societal goal (e.g., AAAS, 1990). Scientific literacy targets socially responsible and competent citizenry in that individuals should be able to participate in and contribute to a society (Hurd, 1998). While there is agreement that advancing scientific literacy among K-12 youth is important, measuring the construct has been problematic since there is no consensus about the meaning or the component parts of what it means to be scientifically literate (DeBoer, 2000). Although “a veritable deluge of definitions” (Roberts, 2007, p. 729) have been developed, historically, most definitions of scientific literacy have focused on generalized knowledge related to major science disciplines, principally content and processes germane to scientists (Roberts, 2007). These “within science” definitions represent a Vision I perspective of scientific literacy (Roberts, 2007). In contrast, a Vision II perspective focuses on situations positioned from the viewpoint of the citizen and concentrates on science-related issues or circumstances individuals may encounter in their lives.

Despite a lack of agreement as to a common meaning of scientific literacy, defining the construct or describing its component parts is critical for science program development (Roberts, 2007). The absence of a definition or an agreed-upon understanding makes it challenging to develop and compare programs, evaluate pedagogical strategies, and perform outcome evaluation. However, because science learning is a function of context, attempting to reach consensus on a universal definition is imprudent (Roberts, 2007). Therefore, any definition of scientific literacy “…should be conceptualized broadly enough…to pursue the goals that are most suitable for [a given] situation” (DeBoer, 2000, p. 582).

In informal science education programs – also referred to as out-of-school time or non-formal – science learning is contextualized and individualized (Falk, Storksdieck, & Dierking, 2007). Persons within a community develop “an understanding of a specific area of science because of his or her unique, personal set of needs and desires to know about this area of science” (p. 458). This is where individuals self-select activities that meet their needs and interests and where they experience excitement in learning about phenomena in the natural world. Informal science programs are guided by varying societal priorities and issues, ranging from local concerns in community-based programs to matters of significance at the state or national level among larger organizations (e.g., 4-H, Boys and Girls Clubs). Understanding this makes it clear that a Vision II perspective provides informal programs a platform to help define scientific literacy. A Vision II perspective allows the component parts that comprise scientific literacy to be specified broadly enough that they address diverse societal issues, yet provide opportunities to develop science programming that is culturally relevant and specific to individual programmatic needs.

Anchor Points of Scientific Literacy for Informal Science Education

We developed a definition of scientific literacy for the context of California 4-H Youth Development that is also relevant for other informal science education programs. Through a systematic, analytical literature review (Steward, 2004), four anchor points were identified as the component parts to define scientific literacy (See Figure 1). The anchor points include science content, scientific reasoning skills, interest and attitude, and contribution through applied participation. Framed conceptually and metaphorically, these anchor points provide guideposts for curriculum and program development, teaching, and evaluation, and are flexible enough for adaptation to local needs and situations.

Figure 1. Anchor Points of Scientific Literacy for Informal Science Education

Figure 1. Anchor Points of Scientific Literacy for Informal Science Education

Contribution to the teaching and learning of science in informal contexts

Defining scientific literacy is critical for program development and evaluation. Emphasizing a Vision II approach (Roberts, 2007) provides opportunities for the systematic advancement of organizational efforts using an asset-based approach to understanding science. This strategy emphasizes relevant science knowledge that individuals learn for different reasons, including interest, need, and curiosity. The anchor points help frame the development and adaptation of curriculum materials; shape the content and design of educator professional development; and utilize consistent outcome goals for program evaluation.

Curriculum: Curriculum development and adaption can be driven by content associated with issues and situations important to clientele and geographic regions (anchor point I), while all curriculum materials, regardless of science content area, can attend to anchor points II (scientific reasoning skills), III (interest and attitudes), and IV (contribution through applied participation).

Professional Development: Secondly, utilizing a Vision II approach to defining scientific literacy provides the opportunity to design educator professional development opportunities that incorporate specific features considered critical to advancing the knowledge and skills of science educators: emphasis on subject matter knowledge (e.g., Penuel et al., 2007), and linking professional development opportunities to broader organizational goals (e.g., Loucks-Horsley et al., 2003).

Learning Assessment: Finally, the four anchor points provide a framework for consistent, measurable learning goals that can be used for evaluation. Summative evaluation can target the four anchor points through the use of appropriate evaluation methods. Specifically, the assessment of content understanding (anchor point I) and contributions made by learners through applied participation (anchor point IV) can be designed around the specific environmental, social, and economic issues. The assessment of scientific reasoning skills (anchor point II) and interest and attitudes (anchor point III) can be measured in all content areas and will provide the opportunity for comparisons across programs.

Conclusion

The definition of scientific literacy using four anchors is adaptable for use by other informal science programs, including local and national community-based organizations. Each program addresses particular needs relative to the youth populations they serve, thus the “focus-on-situations” approach could be modified and positioned around relevant situational issues. Specifically, anchor points I (Science Content) and IV (Contribution through Applied Participation) provide for adaptability within different contexts. Individual programs could identify relevant content and associated service learning projects that provide youth opportunities for applied participation. In comparison, anchor points II (Scientific Reasoning Skills) and III (Interest and Attitudes) are broad constructs that could remain consistent across diverse subject matter areas within different contexts.

Read the full paper at California Agriculture at http://ucanr.edu/anchorpoint/ or view the poster at http://4h.ucanr.edu/files/201952.pdf.

References

American Association for the Advancement of Science. (1990). Science: For all Americans. New York, NY: Oxford University Press.

DeBoer, G. (2000).  Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform.  Journal of Research in Science Teaching, 37(6), 582- 601.

Falk, J. H., Storksdieck, M., & Dierking, L. D. (2007). Investigating public science interest and understanding: Evidence for the importance of free-choice learning. Public Understanding of Science, 16, 455-469.

Hurd, P. D. (1998). Scientific literacy: New minds for a changing world. Science Education, 82, 407–416.

Loucks-Horsley, S., Love, N., Stiles, K., Mundry, S., & Hewson, P. (2003). Designing professional development for teachers of science and mathematics (2nd ed.). Thousand Oaks, CA, USA: Corwin Press.

Penuel, W., Fishman, B., Yamaguchi, R., & Gallagher, L. (2007, December). What makes professional development effective? Strategies that foster curriculum implementation. American Educational Research Journal, 44(4), 921-958.. Roberts, D. A. (2007). Scientific literacy/Science literacy. In S.K. Abell & N.G. Lederman (Eds.), Handbook of Research on Science Education (pp. 729-780).

Roberts, D. A. (2007). Scientific literacy/Science literacy. In S.K. Abell & N.G. Lederman (Eds.), Handbook of Research on Science Education (pp. 729-780).

Steward, B. (2004). Writing a literature review. The British Journal of Occupational Therapy, 67(11), 495-500.

Martin Smith (mhsmith@ucdavis.edu) is a Specialist in Cooperative Extension, and Steven Worker (smworker@ucanr.edu) is a 4-H Youth Development Advisor.

Andrea Ambrose is a Director of Development Services, and Lynn Schmitt-McQuitty is the 4-H Youth Development Advisor and County Director.

Kelley Brian is the Youth, Families and Communities Advisor, and Emily Schoenfelder is the 4-H Youth Development Advisor.

All are a part of the University of California, Agricultural and Natural Resources, 4-H Youth Development Program. In addition, Steven, Martin, and Lynn are members of CSTA.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Leave a Reply

LATEST POST

California Science Curriculum Framework Now Available

Posted: Tuesday, March 14th, 2017

The pre-publication version of the new California Science Curriculum Framework is now available for download. This publication incorporates all the edits that were approved by the State Board of Education in November 2016 and was many months in the making. Our sincere thanks to the dozens of CSTA members were involved in its development. Our appreciation is also extended to the California Department of Education, the State Board of Education, the Instructional Quality Commission, and the Science Curriculum Framework and Evaluation Criteria Committee and their staff for their hard work and dedication to produce this document and for their commitment to the public input process. To the many writers and contributors to the Framework CSTA thanks you for your many hours of work to produce a world-class document.

For tips on how to approach this document see our article from December 2016: California Has Adopted a New Science Curriculum Framework – Now What …? If you would like to learn more about the Framework, consider participating in one of the Framework Launch events (a.k.a. Rollout #4) scheduled throughout 2017.

The final publication version (formatted for printing) will be available in July 2017. This document will not be available in printed format, only electronically.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for CSTA Awards Nominations

Posted: Monday, March 13th, 2017

The 2017 Award Season is now open! One of the benefits of being a CSTA member is your eligibility for awards as well as your eligibility to nominate someone for an award. CSTA offers several awards and members may nominate individuals and organizations for the Future Science Teacher Award, the prestigious Margaret Nicholson Distinguished Service Award, and the CSTA Distinguished Contributions Award (organizational award). May 9, 2017 is the deadline for nominations for these awards. CSTA believes that the importance of science education cannot be overstated. Given the essential presence of the sciences in understanding the past and planning for the future, science education remains, and will increasingly be one of the most important disciplines in education. CSTA is committed to recognizing and encouraging excellence in science teaching through the presentation of awards to science educators and organizations who have made outstanding contributions in science education in the state and who are poised to continue the momentum of providing high quality, relevant science education into the future. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for Volunteers – CSTA Committees

Posted: Monday, March 13th, 2017

Volunteer

CSTA is now accepting applications from regular, preservice, and retired members to serve on our volunteer committees! CSTA’s all-volunteer board of directors invites you to consider maximizing your member experience by volunteering for CSTA. CSTA committee service offers you the opportunity to share your expertise, learn a new skill, or do something you love to do but never have the opportunity to do in your regular day. CSTA committee volunteers do some pretty amazing things: Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

A Friend in CA Science Education Now at CSTA Region 1 Science Center

Posted: Monday, March 13th, 2017

by Marian Murphy-Shaw

If you attended an NGSS Rollout phase 1-3 or CDE workshops at CSTA’s annual conference you may recall hearing from Chris Breazeale when he was working with the CDE. Chris has relocated professionally, with his passion for science education, and is now the Executive Director at the Explorit Science Center, a hands-on exploration museum featuring interactive STEM exhibits located at the beautiful Mace Ranch, 3141 5th St. in Davis, CA. Visitors can “think it, try it, and explorit” with a variety of displays that allow visitors to “do science.” To preview the museum, or schedule a classroom visit, see www.explorit.org. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.

Learning to Teach in 3D

Posted: Monday, March 13th, 2017

by Joseph Calmer

Probably like you, NGSS has been at the forefront of many department meetings, lunch conversations, and solitary lesson planning sessions. Despite reading the original NRC Framework, the Ca Draft Frameworks, and many CSTA writings, I am still left with the question: “what does it actually mean for my classroom?”

I had an eye-opening experience that helped me with that question. It came out of a conversation that I had with a student teacher. It turns out that I’ve found the secret to learning how to teach with NGSS: I need to engage in dialogue about teaching with novice teachers. I’ve had the pleasure of teaching science in some capacity for 12 years. During that time pedagogy and student learning become sort of a “hidden curriculum.” It is difficult to plan a lesson for the hidden curriculum; the best way is to just have two or more professionals talk and see what emerges. I was surprised it took me so long to realize this epiphany. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.