May/June 2017 – Vol. 29 No. 7

Engineer Turned Classroom Teacher

Posted: Wednesday, July 12th, 2017

by Patrick Chan and Susheela Nath

I spent 18 years employed as an engineer. Teaching science was the furthest thing from my mind the day I walked into the president’s office to discuss cutbacks at the company where I had spent the past eight of those years working as a quality assurance manager. When I left the office, my name was added to the unemployment list. It was that moment, at the age of 42, that I decided to change careers and become a science teacher. I am now in my 14th year of teaching middle school science and high school physics. Reflecting on this recently, I have found several parallels between the two careers.

As a process engineer of the epitaxial silicon process at National Semiconductor, I would walk in the fab (short for fabrication) in my bunny suit to find that my process was down overnight and there were dozens of silicon wafers waiting to be processed. It would take me days to duplicate the problem in a manner that would allow me to identify what needed to be done to fit it. Keep in mind, this was a business, and in business, time is money. I soon realized that I needed to teach my operators (on all three shifts) to watch for potential problems. The more information my operators would give me at the moment the problem occurred, the easier it was for me to diagnose the issue and develop corrective action. No one in my department ever trained their operators on the importance of their part of the transistor and on the process of making that part. The operators had only high school diplomas. No one had trained them and entrusted them with this amount of responsibility before. It was a lot of work, but after training, the operators were now partners in problem-solving and helped minimize downtime for our process. This has caused me to reflect a lot lately – imagine how different this situation would have been if those operators had experiences in school where they were entrusted with the necessary skills to be part of the solution.

Students with good observation skills have an advantage in science and in engineering careers. Knowing this, I allow students time to determine what the important areas to observe are – what is important to pay attention to and what doesn’t need as much attention. Once they have identified key observation areas, they are able to focus on these spots during an experiment or test runs of a design. Students will know right away if the locations of observation are the right ones and, if not, make adjustments. Soon, students will be able to identify these key potential observation locations more accurately. Selecting key areas of observation is a very important part of the Science and Engineering Practice – planning and carrying out investigations. Students are also challenged to decide how they can generate quantitative data in these tests. Although qualitative data based on observation can be extremely useful as evidence, data generated by an experiment or test is preferred in science and engineering (a banner of “In God we trust, all others bring data” was in our QA department wall).

CSTA FREP Advert

-Advertisement-

As an engineer, when the product of my department was sent to Scotland to be manufactured there, I became a quality engineer working for the company’s QA department. Quality circle teams were being created as part of our continuous improvement or Kaizen efforts. I worked with several departments to provide quality tools such as SPC (statistical process control) and statistical DOE (design of experiments). It is through this lens that I understand firsthand how important it is to provide engineers (and students) with the necessary skills to solve their own problems. The Engineering Design Process of the Next Generation Science Standards (NGSS) reminds me of the parts needed to systematically solve problems. As an example, students in my class created a bottle rocket that was launched with a digital altimeter. Once the optimal amount of water was determined, they were to improve on the design based on research and retest the rocket. It is vitally important to train students not to focus on the symptoms of the problem but to zero-in on the root cause of the problem in order to efficiently and effectively solve it. A simple method to zero-in on the root cause is to ask “5 Whys”. First, ask the question, “Why didn’t the rocket reach 100 m?” When the students give the answer, then ask “Why?” of the answer, and continue until you reach the actual root cause.

Chan-Rocket-Right-Way

Students are preparing to launch their rocket and collect data as a result of planning and carrying out an investigation.

As I moved into quality assurance management in my engineering career, I had to learn to neutrally facilitate quality circles or quality improvement teams. The problems belonged to the team and did the solutions. I was acting as a consultant that would guide the team through the process. My job was only to provide the right tool at the right time and to move the team forward toward resolution. This is absolutely true also as a science teacher with the NGSS. We also have to trust our teams (in this case, students) to make the correct decisions based on the information they have collected and observations made. It is natural for me to ask guiding questions for their next step or when they hit a “roadblock” because that was my role in QA. This is also true in a classroom where it is important to have guiding questions planned ahead of time to assist students when they get stuck. As the quality engineer, I don’t own the problem or the solution. As the teacher, I don’t own the learning of my students. My role is a facilitator of a process that they will learn to use for any problem. The exit tickets at the end of my classes lately have shown that student retention of science concepts as a result of student ownership of their learning has dramatically improved.

Students using the engineering design process are empowered in their science classes to create products, collect data, and analyze areas of improvement and redesign. We, their science teachers, need to allow them time to adequately plan, analyze, and solve real problems in a safe and supportive environment, then get out of their way.

Patrick Chan works for Aspire’s secondary school, Benjamin Holt Middle School teaching integrated science-8, is a teacher leader for the CA NGSS K-8 Early Implementation Initiative, and a member of CSTA. His e-mail address is patrick.chan@aspirepublicschools.org

Susheela Nath works for Aspire Public Schools as the multi-regional science director, is a project director for the CA NGSS K-8 Early Implementation, and a member of CSTA. Her e-mail address is susheela.nath@aspirepublicschools.org

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or zi@cascience.org.)

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.