September/October 2017 – Vol. 30 No. 1

Engineer Turned Classroom Teacher

Posted: Wednesday, July 12th, 2017

by Patrick Chan and Susheela Nath

I spent 18 years employed as an engineer. Teaching science was the furthest thing from my mind the day I walked into the president’s office to discuss cutbacks at the company where I had spent the past eight of those years working as a quality assurance manager. When I left the office, my name was added to the unemployment list. It was that moment, at the age of 42, that I decided to change careers and become a science teacher. I am now in my 14th year of teaching middle school science and high school physics. Reflecting on this recently, I have found several parallels between the two careers.

As a process engineer of the epitaxial silicon process at National Semiconductor, I would walk in the fab (short for fabrication) in my bunny suit to find that my process was down overnight and there were dozens of silicon wafers waiting to be processed. It would take me days to duplicate the problem in a manner that would allow me to identify what needed to be done to fit it. Keep in mind, this was a business, and in business, time is money. I soon realized that I needed to teach my operators (on all three shifts) to watch for potential problems. The more information my operators would give me at the moment the problem occurred, the easier it was for me to diagnose the issue and develop corrective action. No one in my department ever trained their operators on the importance of their part of the transistor and on the process of making that part. The operators had only high school diplomas. No one had trained them and entrusted them with this amount of responsibility before. It was a lot of work, but after training, the operators were now partners in problem-solving and helped minimize downtime for our process. This has caused me to reflect a lot lately – imagine how different this situation would have been if those operators had experiences in school where they were entrusted with the necessary skills to be part of the solution.

Students with good observation skills have an advantage in science and in engineering careers. Knowing this, I allow students time to determine what the important areas to observe are – what is important to pay attention to and what doesn’t need as much attention. Once they have identified key observation areas, they are able to focus on these spots during an experiment or test runs of a design. Students will know right away if the locations of observation are the right ones and, if not, make adjustments. Soon, students will be able to identify these key potential observation locations more accurately. Selecting key areas of observation is a very important part of the Science and Engineering Practice – planning and carrying out investigations. Students are also challenged to decide how they can generate quantitative data in these tests. Although qualitative data based on observation can be extremely useful as evidence, data generated by an experiment or test is preferred in science and engineering (a banner of “In God we trust, all others bring data” was in our QA department wall).

CSTA FREP Advert

-Advertisement-

As an engineer, when the product of my department was sent to Scotland to be manufactured there, I became a quality engineer working for the company’s QA department. Quality circle teams were being created as part of our continuous improvement or Kaizen efforts. I worked with several departments to provide quality tools such as SPC (statistical process control) and statistical DOE (design of experiments). It is through this lens that I understand firsthand how important it is to provide engineers (and students) with the necessary skills to solve their own problems. The Engineering Design Process of the Next Generation Science Standards (NGSS) reminds me of the parts needed to systematically solve problems. As an example, students in my class created a bottle rocket that was launched with a digital altimeter. Once the optimal amount of water was determined, they were to improve on the design based on research and retest the rocket. It is vitally important to train students not to focus on the symptoms of the problem but to zero-in on the root cause of the problem in order to efficiently and effectively solve it. A simple method to zero-in on the root cause is to ask “5 Whys”. First, ask the question, “Why didn’t the rocket reach 100 m?” When the students give the answer, then ask “Why?” of the answer, and continue until you reach the actual root cause.

Chan-Rocket-Right-Way

Students are preparing to launch their rocket and collect data as a result of planning and carrying out an investigation.

As I moved into quality assurance management in my engineering career, I had to learn to neutrally facilitate quality circles or quality improvement teams. The problems belonged to the team and did the solutions. I was acting as a consultant that would guide the team through the process. My job was only to provide the right tool at the right time and to move the team forward toward resolution. This is absolutely true also as a science teacher with the NGSS. We also have to trust our teams (in this case, students) to make the correct decisions based on the information they have collected and observations made. It is natural for me to ask guiding questions for their next step or when they hit a “roadblock” because that was my role in QA. This is also true in a classroom where it is important to have guiding questions planned ahead of time to assist students when they get stuck. As the quality engineer, I don’t own the problem or the solution. As the teacher, I don’t own the learning of my students. My role is a facilitator of a process that they will learn to use for any problem. The exit tickets at the end of my classes lately have shown that student retention of science concepts as a result of student ownership of their learning has dramatically improved.

Students using the engineering design process are empowered in their science classes to create products, collect data, and analyze areas of improvement and redesign. We, their science teachers, need to allow them time to adequately plan, analyze, and solve real problems in a safe and supportive environment, then get out of their way.

Patrick Chan works for Aspire’s secondary school, Benjamin Holt Middle School teaching integrated science-8, is a teacher leader for the CA NGSS K-8 Early Implementation Initiative, and a member of CSTA. His e-mail address is patrick.chan@aspirepublicschools.org

Susheela Nath works for Aspire Public Schools as the multi-regional science director, is a project director for the CA NGSS K-8 Early Implementation, and a member of CSTA. Her e-mail address is susheela.nath@aspirepublicschools.org

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.

News and Happenings in CSTA’s Region 1 – Fall 2017

Posted: Tuesday, August 29th, 2017

by Marian Murphy-Shaw

Cal

This month I was fortunate enough to hear about some new topics to share with our entire region. Some of you may access the online or newsletter options, others may attend events in person that are nearer to you. Long time CSTA member and environmental science educator Mike Roa is well known to North Bay Area teachers for his volunteer work sharing events and resources. In this month’s Region 1 updates I am happy to make a few of the options Mike offers available to our region. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.