September/October 2017 – Vol. 30 No. 1

Family Science Fair Nights

Posted: Tuesday, February 1st, 2011

In the last issue of CCS, I talked in a general way about family science nights as a way to get families involved in doing hands-on science together.  In the next few issues I will go into more detail about a few types of family science nights.

Since most schools are in the thick of science fair season right now, I thought I’d start with the most structured type of science night—a family science fair night.  I’ve done these two ways.  For groups that are primarily older upper elementary students and their families, doing an experiment with the whole group is a great way to model the process of doing science fair.  For more mixed groups with more younger kids, this may be too structured and a more exploratory model can be used.

First, a whole group science fair night.

For this kind of night, we set up in the cafeteria with tables arranged so families can work together on the project.  On one wall we have a big science fair board set up with the headings that we will fill in as we go—question, research, hypothesis, data, etc.  At the front are chart stands are set up with chart paper and tape ready to go (use sticky chart paper if you can afford it).  Alternatively you can use a document reader so you can write in a science fair journal and the audience can follow.  I usually have a few sponge activity stations set up for families as they arrive.  Often a member of the local astronomy club will set up some telescopes in front of the building.  You can also have an area where winning science fair projects from past years are on display.

One person will facilitate the experiment and another person will help by charting responses from the kids that will go up on the board.  It is visually more interesting to build the project on the board, but be sure to emphasize that when they do the project it needs to be done in the journal first, with the board being done later as a display.  When families arrive they can sign in and pick up any handouts.

I have found two experiments that work very well for this type of project.  (I’m interested in hearing about other good possibilities!)  The first is a more open-ended experiment with mealworms that helps participants to develop good questions.  In the second, an experiment with water tension, participants are given the question and learn about controlling variables.

Mealworms: For the mealworm experiment, when families sit down at a table, they find a cup of about 10 mealworms, a hand lens, and some different colors and types of paper (foil, sand paper, wax paper, cardboard).  Mealworms are a great subject for a science fair project because they are cheap (at the pet store) so they can generate a large sample size for experiments without breaking the bank.  At the front of the room instructions are posted to start to examine the mealworms and make observations about their behavior.

After everyone has arrived, make introductions, welcome the families, and then ask for some students to share their observations.  If you have a cordless microphone, you can walk around and solicit responses.  If you don’t, invite kids to come up to the front to speak into the microphone there.  After some observations are charted, add the chart paper with observations to the big science fair board under the “research” heading.  Emphasize that having some experience with the subject is important before you can ask a good question.

I then pass out a sheet of paper with information at elementary level about mealworms and their lifecycle.  I give families five minutes to read it together and to write down three interesting things they learned about mealworms.  I then invite kids to share what they learned and these ideas are charted and added to the “research.”  The source of the article should be written down and added to the “bibliography” section of the board.

Now it’s question time.  Ask each family to think about their observations and research and think of several good questions that they think will be good science fair questions.  You might want to listen in on the conversations and ask kids with good ideas if they will share with the group.  This will ensure some testable questions.  After a few minutes, invite kids to share.  Chart out about ten questions.  Now explain that while these are all good questions, some can be answered by doing an experiment and some cannot.  Go through the list and ask the audience to give a thumbs up or a thumbs down if that question can be answered by doing an experiment.  They will do a pretty good job of this.  Once this process is done, you will have a list of possible science fair questions that could lead to a project.

Some of the questions will be about the life cycle.  Point out that these are great projects to do at home, but that they will take several weeks and we need to do an experiment right now.  Hopefully one or two of the questions will lead to an immediate experiment, questions like, “Do mealworms prefer light or dark?  Do mealworms like to go up or down?  Do mealworms prefer sand paper or regular paper?”  Choose one and write it down as the question on the board.  Have the audience vote on the hypothesis and write it down as an “if…, then…” statement.  For example, “If we put mealworms on a slanted piece of cardboard then more mealworms will go up than down.”

Design a fast experiment and write down a procedure.  Have each family do the experiment with their ten mealworms and then send up a kid with the data.  Create a T- chart for the data at the front of the room.  Kids will come up and report their data, for instance, “Two went up and eight went down.”   Because each family is contributing data, this creates a very large sample size.  Once all the data is compiled it can be put on the board and a graph made to display it.

Continue in the same manner to write up results, evaluate the hypothesis and write a conclusion.  Most of the time the experiment won’t give clear results, and this is a good time to make the point that it is okay to conclude that the results are mixed and that further experimentation is needs.  It is also a good time to point out that a hypothesis is “supported” or “not supported,” rather than “proved or disproved.”

Writing the acknowledgments is a time to make the point that it is okay to get help on a science fair project, but that you need to be detailed and specific about what help you received.

Pennies: This experiment helps to clarify what variables are and how to control them.  It follows the same basic process as the mealworm experiment.  Each family has a cup of water, an eyedropper, paper towels, and several pennies.  After introductions, begin with the question, “How many drops of water can fit on a penny?”  First ask for predictions.  These will usually be anywhere from three to six drops.  Now let each family try a few times.  While they are doing this, walk around and make observations.

After everyone has had a chance, let kids shout out the number of drops that they got.  These numbers will be surprisingly high and have a wide range.  Have some kids come up and share observation which you can chart as part of the research section.  Examples will probably include, “It looked like a dome or bubble,” “It magnified the penny,” “It wiggles like jello.”

Now pass out some articles written at an elementary level on water tension.  The Exploratorium website has a good one.  Give families five minutes to read and then invite kids to share findings to add to the research.

Now to the question of variables.  Point out that they number of drops they reported was very different.  Put the word “changes” at the top of a piece of chart paper.  Ask what changes would affect the number of drops that fit on a penny.  Encourage each family to come up with at least three.  Point out that changes could be to the penny, the water, or to the way drops are added.  Again have kids come up and share ideas.  Examples will be, “The size of the drops, heads or tails, the temperature of the water, how high you hold the dropper, how hard you squeeze, how clean or dirty the penny.” Chart all responses.

Now cover up the word changes at the top of the chart with the word “Variables.”  Explain that they have just brainstormed a list of many of the variables that affect the outcome of this experiment.  To design an experiment we need to choose just one variable to test and control all of the others as best we can.  Ask if there is a variable on the list that we could test in the next 10 minutes and let an audience member choose.  Circle this and write “experimental variable” next to it.  Explain that all the other variables on the chart are now control variables.

Have the audience vote on the hypothesis and then write this down in “if… then…” form.  For example, if we add drops from 1 cm and from 5 cm high, we think we will get more drops on the penny from 1 cm.  Now you can quickly write a procedure for testing the experimental variable.  Go through the list of all the other variables and ask for ideas on how to control these.  For example ask, “Heads or tails?” and write down in the procedure whatever the audience tells you.

Some of the variables will be hard to control.  For example, “How hard you squeeze the dropper.”  Point out that what makes a very good project is an awareness of the variables and good solutions for controlling them.  “For tonight we will try to control these by having the same person do both trials and they will have to try and be consistent.”

Run the experiment and collect data as in the mealworm experiment.  From this point on, the structure of the evening is the same as for the  mealworm experiment.

A less structured evening for younger kids

For a group with many younger students, the step-by-step experiments described above might be too structured.  For younger students, I set up many hands-on stations like those described in the January CCS, but add a twist.

Each family gets a sheet of paper on which they can write down several questions that they come up with at each station.  As the night is proceeding, talk to families and get questions to add to a big list at the front of the room.

At the end of the night, pull the whole group together and explain that while these are all good questions, some can be answered by doing an experiment and some cannot.  Go through the list and ask the audience to give a thumbs up or a thumbs down if that question can be answered by doing an experiment.  They will do a pretty good job of this.  Once this process is done, you will have a list of possible science fair questions that could lead to a project.

Pete A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is region 4 director for CSTA.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Leave a Reply

LATEST POST

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.

News and Happenings in CSTA’s Region 1 – Fall 2017

Posted: Tuesday, August 29th, 2017

by Marian Murphy-Shaw

Cal

This month I was fortunate enough to hear about some new topics to share with our entire region. Some of you may access the online or newsletter options, others may attend events in person that are nearer to you. Long time CSTA member and environmental science educator Mike Roa is well known to North Bay Area teachers for his volunteer work sharing events and resources. In this month’s Region 1 updates I am happy to make a few of the options Mike offers available to our region. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.