May/June 2017 – Vol. 29 No. 7

The College Board’s Seven Science Practices: Practice Number Four

Posted: Friday, March 1st, 2013

by Bethany Dixon

The College Board has released seven science practices that will be shared through the disciplines. (Note: these are not to be confused with the NGSS “Science and Engineering Practices” from the Framework for K-12 Science Education.) The new Advanced Placement Curriculum Framework for AP Biology began this year, with plans for revamping AP Chemistry (2013-2014) and AP Physics (2014-2015) on the horizon. The new frameworks give students a chance to hone their skills at the lab bench, which is crucial for their success with the new AP Science Examinations and the upcoming transition to NGSS. Here is the second installment of the seven practices overview, with use-them-now tips for your classroom. The first three practices can be found in our February issue of eCCS.

 

4.     Plan and implement DATA COLLECTION strategies appropriate to a particular scientific question.

“Yes, but how do we MEASURE that?!” is a question that shouldn’t be the end to a scientific inquiry; instead, it’s part of the entire scientific process and experience. Teaching students how to arrange and collect data in an appropriate way is no easy feat, though. One group that has a handle on it is NASA’s Mars Student Imaging Project. The project helps students establish data-collection protocols and gives them the opportunity to collect and analyze data taken by the Thermal Emission Imaging System Camera on NASA’s Mars Odyssey orbiter. Teaching students to plan their own data collection method is a great way to involve students in understanding how science is built through peer review, and researching accepted protocols for different disciplines is a valuable learning experience for upper-level students.

Prompting students to looking at the way data is collected and to question each step provides them with greater insight on each aspect of the process. Asking students critical questions about even cookbook labs can help to build their inquiry skills, for example, “Why are they measuring both before and after the test?” or, “What are they looking for?” or, “Why is aseptic technique important in this lab, but not in the last one?”  Giving students choices between measuring implements for a lab slides them into creating their own data collection methods early. We can ask them to deliberate about what device or tool, (such as metric rulers, timers, thermometers, etc.) is most appropriate to measure with in order to collect the desired data. Beyond actual collection strategies, data implementation is also critical for student success. Understanding what constitutes data and how to effectively manage data during an experiment is a lesson many students learn and reinforce through experience. A favorite of mine is from “Loose in the Lab,” where students make “helicopters” of different sizes and fly them for one minute without collecting data and we explain the importance of reliable data.

After the data collection method has been established we must insure that students are collecting data appropriately. Students frequently struggle with the differences between error analysis in high school classes and uncertainty principles used in college labs. Many students in my class are able to effectively calculate error and describe significant figures but when it comes to understanding the “why” and “how” of probability and managing uncertainty in the college classroom, the differences between demonstrating (calculating) and  using (understanding and applying) error analysis can be frustrating and confusing. One technique used by the Science Education Resource Center (SERC) is to break the process into three key steps: First, teaching students how to make effective measurements and determine the differences between error and uncertainty. Second, give students the tools to measure effectively by identifying sources of error and sources of uncertainty in both individual measurements and groups of measurements. Third, students should integrate uncertainty measurement into existing lab activities on their own, blending what they’ve practiced with their own inquiry labs and pre-made labs.

Data collection and data collection strategies shouldn’t be limited to science classes. Utilize your teacher resources at your school to find out what kinds of data need to be collected on campus, or that might be valuable for math, English, or social science classes. A cross-curricular data-collection experiment on study habits is always appreciated by the counseling department, and students love collecting meaningful data and sharing their results with their peers. I also find that sharing how data is collected in other disciplines helps students who aren’t planning on majoring in science find real relevance in my course. My political science, psychology, and history majors are always impressed to find out that they can get a “leg up” in their major in research methods by understanding data collection.

Look for our next segment on the seven science practices in the next issue of ECCS including:

5.      Perform DATA ANALYSIS and evaluation of evidence.

6.    Work with scientific EXPLANATIONS AND THEORIES.

7.     CONNECT AND RELATE knowledge across various scales, concepts, and representations.

Written by Bethany Dixon

Bethany Dixon is a science teacher at Western Sierra Collegiate Academy, is a CSTA Publications Committee Member, and is a member of CSTA.

Leave a Reply

LATEST POST

Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here: https://www.surveymonkey.com/r/HappyAtoms

Please contact Rosanne Luu at rluu@wested.org or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.