September/October 2017 – Vol. 30 No. 1

From Hot Asphalt to Solar Radiation

Posted: Monday, March 14th, 2016

by Philip Hudec

Imagine a group of sixth graders, challenging one another to see who can sit on the asphalt the longest, on a hot August day at a middle school in the Palm Springs Unified School District, where temperatures can reach 115° F. (This may sound crazy to you but believe me, students in our district really do this!) Our students know that it is hotter in the desert than in most other places.They know that if they stick to the white lines of the black top, they are less likely to burn their feet. They know that when splashing water on the pool deck, it will be cool enough, even if only for a few minutes, to sit on.

What they don’t know is why these facts are true.

Now imagine the opportunity that their science teachers have to make connections between this common knowledge and the physics of heat, weather, and climate. Previous iterations of the California Science Standards, more often than not, ignored these types of opportunities. The 1998 California Science Standards, which placed an emphasis on students’ “knowing” information (often understood to mean being able to regurgitate information), did not always emphasize real world examples as a way of extending knowledge. For example, a 1998 standard on heat at 6th grade read, “Heat moves in a predictable flow from warmer objects to cooler objects until all the objects are at the same temperature.” Separate standards on energy in the Earth system further emphasized the need for students to “know” facts about these important science concepts without making explicit connections in relation to the cause and effect between them.

SVCTE-STEAM-job-ad

-Advertisement-

Today, as then, we have students in our classrooms that can make concrete connections to experiences in their everyday lives. The difference between then and now, however, is that now we are expected to tap into those real world experiences. As people of science, we understand the connection between heat transfer and how it drives weather and climate. Previously, however, their connections were often lost due to the mere fact that they were concepts in separate chapters of an adopted textbook.

Modeling the Sun and Earth relationship.

Modeling the Sun and Earth relationship.

Within the California Next Generation Science Standards (CA-NGSS), our students are asked to develop and use models to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic currents that determine regional climates. They are asked to collect data and to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. These performance expectations (MS-ESS2-5and MS-ESS2-6) are loaded with academic content in the form of “doing” science and engineering practices, applying understanding of disciplinary core ideas, and thinking in terms of crosscutting concepts.  It is easy to see that our students will be challenged to make the connections among the cause and effect relationship between the physics of heat and weather and climate. As educators, we can draw on their prior knowledge (like that obtained in their fun filled challenges on the school asphalt or by wearing black on a hot summer day) and begin to build conceptual frameworks that help them to demonstrate their understanding of the world around them.

Tackling the concept of heat capacity using heat lamps and various substrate materials.

Tackling the concept of heat capacity using heat lamps and various substrate materials.

This, of course, is one of the main goals behind the CA-NGSS. We want our students to have an understanding of how the universe works. This was also one of the main goals a team of scientists and educators and I had when we came together last summer as part of the California K-8 Next Generation Science Standards Early Implementation Initiative to provide professional development training. Dr. Cheryl Peach, from the Birch Aquarium at UCSD’s Scripps Institute of Oceanography, and Dr. Susan Gomez-Zwiep, a CSULB professor of science education, and I worked with a passionate group of 6th grade science educators from around southern California on the integration of earth, physical, and life science components of the NGSS. We found that making strong connections to prior knowledge and asking questions in regards to interesting phenomena helped to make learning the science a more meaningful experience that led to a deeper understanding.

Modeling the Coriolis effect to better understand patterns within global atmospheric and oceanic currents.

Modeling the Coriolis effect to better understand patterns within global atmospheric and oceanic currents.

During the summer institute, teacher’s involved spent time collecting data from their own investigations, and cross checking their findings, while looking for patterns in real world data gathered from various sources such as offshore moorings, National Oceanic and Atmospheric Administration (NOAA) websites, and the graduate students at the Scripps Institute of Oceanography. We started our week with a phenomenon: an animated map of global weather conditions indicating both global temperature patterns and ocean currents.

Throughout the summer institute, an emphasis was placed on asking interesting questions and the path to finding the answers using a 3-dimensional approach found within the NGSS. A 3-dimensional approach is the integration of the Science and Engineering Practices (SEP) with Crosscutting Concepts (CCC) and Disciplinary Core Ideas (DCI). While teachers conducted investigations and analyzed data (SEP) about how heat flows in different Earth materials (DCI), questions were used to focus their discussions around patterns (CCC). Is there a pattern to this data? How can I organize and display my data to show this pattern? Later in the week, teachers were asked to extend these patterns to develop models about how heat from the Sun can predict and explain global wind and ocean currents in the Earth’s system. Our questions shifted to “how can we model this system (Earth) and what are the parts or sub-systems contributing to these currents?” Our goal was to contribute to the important work being done to create more scientifically literate students. As science educators, we were reminded of our need to challenge students to think, to ask questions, and to connect their prior knowledge to science concepts.

Perhaps, in a few years, we will overhear our students contemplating the relationship between elevation, air pressure, and temperature as they sit on the hot blacktop determined to win the asphalt challenge.

Crosscutting concept questions retrieved fromhttp://crosscutsymbols.weebly.com/

>Philip Hudec is a Science Teacher on Special Assignment with the Palm Springs Unified School District, and can be contacted at phudec@psusd.us

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

CSTA Is Now Accepting Nominations for Board Members

Posted: Friday, November 17th, 2017

Current, incoming, and outgoing CSTA Board of Directors at June 3, 2017 meeting.

Updated 7:25 pm, Nov. 17, 2017

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There are time and energy commitments, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interested in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.