January/February 2018 – Vol. 31 No. 2

Is the NGSS Going to Ruin High School Chemistry?

Posted: Monday, October 19th, 2015

By Pete A’Hearn and Wanda Battaglia

Pete: Most science teachers I work with are excited about the shift to NGSS and exploring new possibilities for student learning. But, I have heard some grumbling from high school chemistry teachers that NGSS is gutting chemistry. “Why there are no standards for subjects like the Gas Laws, acids and bases, naming of compounds, and solutions that are an important part of chemistry?”

I know that you are a high school chemistry teacher who is working hard on NGSS. How would you respond to these teachers?

Photo by Wanda Battaglia

Photo by Wanda Battaglia

Wanda: NGSS is asking for a change in the thinking…the NGSS Performance Expectations don’t describe “subjects,” but long-term transfer skills. NGSS is “science for all students.” It represents the basic framework for teachers to design their curriculum. Teachers can add as much as content as they want–but it’s important to change the process by which the students are learning it.

Even though certain content is not explicitly mentioned, that does not mean that it can’t be taught. Gas laws, for example, could be covered within HS-PS1-3, HS-PS1-5, HS-PS1-6, or HS-PS2-6…basically anywhere that molecular interactions would be discussed. Performance expectations can be bundled– teachers must not think in terms of “those chapters from the book” anymore, but apply more of their own creativity and integrate content to explore phenomena.

An example is a unit I’ve taught on Atomic Structure that bundles Chemistry standards on the structure of the atom, the physics of waves, and their uses in astronomy and medical technology. Resources for the unit can be found at: https://ngsschemistry.wordpress.com/unit-2-atomic-structure/.

Many teachers I know are still covering their “old & comprehensive” content in Honors Chemistry, but redesigning their classes to be more investigative and/or problem-based. In “regular” Chemistry, the focus is more on the practices and crosscutting concepts.

Pete: Yes, it’s important to remember that NGSS is the floor, not the ceiling. It’s focused on the learnings that students will need to solve problems or understand science ideas in the real world, it’s not about marching through the subjects in the book.

But many teachers feel that without doing lots of Chemistry math problems, students will not be prepared for college level work in Chemistry. They feel that to best prepare kids for college, their classes need to look like college. That means lots of lecture, lots of problem sets. One of the things we hear about science and engineering pathways is that many kids who go to college intending to study science and engineering are unprepared for the amount of math and drop out. Won’t downplaying the math make this problem worse?

Photo by Wanda Battaglia

Photo by Wanda Battaglia

Wanda: Teachers can put as much math into it as they want. The NGSS should not be viewed as restrictive, but flexible. From my perspective, the NGSS has a focus on students understanding relationships between variables, not just learning how to “plug & chug,” which is the traditional way.

For example, I have had Honors Chemistry students who could plug in numbers using the ideal gas equation, but could not explain if their answer made sense. They understood where the numbers go, and how to solve the equation, but could not demonstrate any understanding of how the variables affected each other. Students must investigate to uncover those relationships, so that the math then makes sense.

It is more important that the average student has the necessary thinking skills to tackle problems in general. Students who are college bound, and contemplating a career in a science or technical field, should be taking AP Chemistry to prepare them for college chemistry.

Pete: What is your vision for how a student who goes through high school with NGSS will be prepared for college and career? How will that be different than a student’s experience now?

Wanda: With a cohesive and passionate K-12 implementation of NGSS, I believe that students will exit high school with the ability to be more independent in their thinking and problem solving, while also sustaining more of an inquisitive mindset. This will foster more innovative thinking on the part of our students, which will contribute to success beyond high school in any area of study.

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

9 Responses

  1. It seems that we are still talking about two sides of the same coin. I understand that the tendency to “plug and chug” has been prevalent in the past because of the need to march through the material/textbook. However, to seemingly ignore that and only focus on the relationships is also incomplete. It is disingenuous to imply that just understanding the relationships between variables will create complete understanding. Furthermore, I know of very few chemistry teachers who completely forgo the practice of relating variables within a concept. Lastly, Wanda is making a sweeping judgement that I think is pervasive among the NGSS crowd:
    “It is more important that the average student has the necessary thinking skills to tackle problems in general.”
    How is this not gutting high school chemistry? How will the future college science student that Wanda describes be successful in AP Chemistry if they have not at encountered something similar before? The college science student will benefit from having taken AP chemistry, but the general high school chem student cannot as they progress to AP chem? And are you really suggesting that only students with AP science backgrounds will seek out science education and careers? What does that mean for students at my site where our AP Chem and AP Bio programs are offered every other year?
    You may not have intended those connections to be made, but this is largely due to the ambiguousness of your answer, which are so similarly made by so many regarding the impact of NGSS on science learning and programs.

  2. Wanda’s glib reply that teachers are perfectly free to include all of the chemistry that was left out of the NGSS, and to use as much math practice as they think necessary, ignores the fact that time is not infinite. The gutting of chemistry is very real, and is partially acknowledged in the proposed implementation (“course mapping”) document published by the NGSS team. It acknowledges that in many states, there are three science courses: biology, chemistry, and physics. Biology and NGSS Life Science map very well. NGSS Earth Science should indeed be taught, but does not map onto those other courses at all. And NGSS Physical Science is 75% physics and 25% chemistry. In places like California, where the state university has declared that only biology, chemistry, and physics count as science courses for admission to college, but where the organizationally separate state department of education has declared that public schools will adopt the NGSS, districts end up forced into what NGSS calls the “Modified Science Domains Model,” which means that four pounds of content are stuffed into a three-pound bag. Schools will teach courses called biology, chemistry, and physics, to satisfy UC, but will actually be cutting much of that content, especially in chemistry, in order to replace it with the earth science that students will be tested on statewide.

    The intellectually honest solution, and the pedagogically best one, is for high schools to offer four years of college prep science: earth science, biology, chemistry, and physics, as some states have been doing for years. It’s an outrageous cop-out to say, as Wanda does, that students who want to consider majoring in a technical field in college should take AP Chemistry. Apparently she is unaware that not everyone in the United States has that option. Furthermore, that’s an unreasonable declaration. If we properly serve our students, they should be prepared to major in whatever they might want to, based purely on the college prep high school courses they take. To say “Let them take AP Chemistry” is really showing a “let them eat cake” level of detachment from the actual situations of real students.

    As a former research scientist, I know that you can’t solve a problem until you first admit that it exists and then define it. The comments in the article attempt to deny that a problem exists.

  3. I hope this article is way off the mark. I agree with Erik Cross 100%. It is the baby with the bathwater issue all over again. The content standards were lacking so rather than add the expectations of NGSS, we toss the content standards all out? “Teachers can put as much math into it as they want. The NGSS should not be viewed as restrictive, but flexible.” I’m not sure my parent stakeholders would be comfortable knowing that there is not a clear understanding of what their child will learn or that a child in another teacher’s class may leave better prepared for AP or college chem. It looks like again we are going to lower the chem bar so low that the kids are going to trip on it when they walk in the door. I WILL make sure my students know how to do the math required to prepare them for AP and college chem while implementing NGSS. I am vertically planning with my AP chem teacher to ensure that we do just that. But how can a teacher who teaches a class called “chemistry” not prepare them for a STEM major or career? Apparently the California Science Teachers Association calls it NGSS.

  4. Interesting article.

    I agree with Pete. I am not convinced that NGSS for Chem is a good idea.

    I have not heard any input from college professors on how it affects their incoming students.

    I found this article while looking for chemistry phenomena to use for NGSS. I live in California and this is the direction education is going here. I am just trying to get prepared for what I have to do. I need a paycheck. California is an expensive state to live. Aka: the welfare state. Someone has to pay for all of those entitlements.

  5. NGSS conflates how technically trained professionals “do” science with the best methods for teaching children how to learn science. This is not just a mistake – but will inflict irreparable harm to a generation of young people. High school chemistry epitomizes this backwards approach. Tired of hearing the claim that NGSS are a “floor not a ceiling” – this philosophy defeats the very purpose of having true educational standards. When the minimizing of the chemistry curriculum is combined with the so-called integrated science model at the middle level, confusion – not enlightenment – will be the norm. So sorry to see CA taking the NGSS hook, line, and sinker. We here in NY are following in your footsteps and I for one do not like the road we are following.

  6. New York has enhanced the NGSS with standards that do include the key chemistry concepts. Kudos to NYS! They are not the only ones, either.

    The fact about any standard is that it paves a particular path. Sure, teachers can add on their own side excursions, but they have no guidance or reason to do so. These standards set a national floor, and states that do not build on that floor will be setting a ceiling in the same place.

    The NGSS are a good example of doing the wrong things for the right reasons. I am a former large-university chemistry professor and so was particularly bothered by the loss of gas laws, acid-base chemistry, and a number of other crucial elements for understanding our world. We definitely must have our science classes use the inquire-explore-discover approach to science. We also should have an introduction to basic engineering — but not the wholesale replacement of science with engineering that some organizations propose. These are good ideas. However, the implementation of ideas is where things always can go wrong.

    Somehow, the NGSS committee decided that physical science really means physics and left chemistry out in the cold. New York fixed that omission very neatly. Those not in that state should take the time to read their standards. You’ll find few amendments to NGSS outside of that context. New York really recognized the gaping hole in NGSS and fixed it.

    Let us hope that a future revision of NGSS will use the ideas from the wise people in New York and other states doing similar revisions (I have seen some in Missouri).

    In the meantime, must do as Wanda says and stretch the existing standards to cover these important concepts.

  7. To follow up, here is a link to the NYS standards: http://www.p12.nysed.gov/ciai/mst/sci/documents/p-12-science-learning-standards.pdf.

    They added colligative properties, gas laws, acid/base behavior, redox reactions, Ohm’s law, lenses/mirrors, human reproduction, Moon phases/tides/eclipses/seasons, and weather to high school.

    Middle school additions: density, mixtures, and electric currents.

    In grade 3, they added one about relating water and weather.

    There were additions for pre-school and one for kindergarten.

    These are modest but significant additions. Despite the claim that the NGSS are not about content, they truly are because you cannot learn the requisite thinking skills in a vacuum, and the NGSS are shot through with content. Any state can copy New York. IMO, they all should, at least in approach. New York has created a great model for science standards based on the NGSS. They really work.

  8. The fundamental flaw of the NGSS cannot be “fixed” by any state. The central role of the constructivist/discovery approach infused at all grade levels into virtually every standard will do more damage than any omission of specific science content. Discovery learning is a failed and debunked pedagogy. And it flies in the face of cognitive learning theory and brain/neuro science. Solving problems in the absence of adequate knowledge stored in long term memory is asking the impossible of young science students. This fundamental flaw will be the downfall of the NGSS as currently structured. The adults in charge must stop conflating the ways that highly trained and well educated professional, adult scientist DO science with the very different requirements that children need to LEARN science.

  9. I can’t speak for other levels except middle school, but Rick hit the nail on the head for your average middle school student.

Leave a Reply


California Science Test Academy for Educators

Posted: Thursday, February 15th, 2018

California Science Test Academy for Educators

To support implementation of the California Science Test (CAST), the California Department of Education is partnering with Educational Testing Service and WestEd to offer a one-day CAST Academy for local educational agency (LEA) science educators, to be presented at three locations in California from 8:30 a.m. to 3:30 p.m. As an alternative to traveling, LEA teams can participate virtually via WebEx on one of the dates listed below.

The dates and locations for the CAST Academy are as follows:

  • Monday, April 23, 2018—Sacramento
  • Wednesday, April 25, 2018—Fresno
  • Thursday, April 26, 2018—Irvine

The CAST Academy will help participants develop a deeper understanding of the assessment design and expectations of the CAST. The academy also will provide information and activities designed to assist educators in their implementation of the California Next Generation Science Standards and three-dimensional learning to help them gain an understanding of how these new science assessment item types can inform teaching and learning. The CAST Academy dates above are intended for school and district science instructional leaders, including teacher leaders, teacher trainers, and instructional coaches. Additional trainings will be offered at a later date specifically for county staff. In addition, curriculum, professional development, and assessment leaders would benefit from this training.

A $100 registration fee will be charged for each person attending the in-person training. Each virtual team participating via WebEx will be charged $100 for up to 10 participants through one access point. Each workshop will have the capacity to accommodate a maximum of 50 virtual teams. Each virtual team will need to designate a lead, who is responsible for organizing the group locally. Registration and payment must be completed online at http://www.cvent.com/d/6tqg8k.

For more information regarding the CAST Academy, please contact Elizabeth Dilke, Program Coordinator, Educational Testing Service, by phone at 916-403-2407 or by e‑mail at caasppworkshops@ets.org.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Accelerating into NGSS – A Statewide Rollout Series Now Accepting Registrations

Posted: Friday, January 19th, 2018

Are you feeling behind on the implementation of NGSS? Then Accelerating into NGSS – the Statewide Rollout event – is right for you!

If you have not experienced Phases 1-4 of the Statewide Rollout, or are feeling behind with the implementation of NGSS, the Accelerating Into NGSS Statewide Rollout will provide you with the greatest hits from Phases 1-4!

Accelerating Into NGSS Statewide Rollout is a two-day training geared toward grade K-12 academic coaches, administrators, curriculum leads, and teacher leaders. Check-in for the two-day rollout begins at 7:30 a.m., followed by a continental breakfast. Sessions run from 8:00 a.m. to 4:15 p.m. on Day One and from 8:00 a.m. to 3:30 p.m. on Day Two.

Cost of training is $250 per attendee. Fee includes all materials, continental breakfast, and lunch on both days. It is recommended that districts send teams of four to six, which include at least one administrator. Payment can be made by check or credit card. If paying by check, registration is NOT complete until payment has been received. All payments must be received prior to the Rollout location date you are attending. Paying by credit card secures your seat at time of registration. No purchase orders accepted. No participant cancellation refunds.

For questions or more information, please contact Amy Kennedy at akennedy@sjcoe.net or (209) 468-9027.



MARCH 28-29, 2018
Host: San Mateo County Office of Education
Location: San Mateo County Office of Education, Redwood City

APRIL 10-11, 2018
Host: Orange County Office of Education
Location: Brandman University, Irvine

MAY 1-2, 2018
Host: Tulare County Office of Education
Location: Tulare County Office of Education, Visalia

MAY 3-4, 2018
Host: San Bernardino Superintendent of Schools
Location: West End Educational Service Center, Rancho Cucamonga

MAY 7-8, 2018
Host: Sacramento County Office of Education
Location: Sacramento County Office of Education Conference Center and David P. Meaney Education Center, Mather

JUNE 14-15, 2018
Host: Imperial County Office of Education
Location: Imperial Valley College, Imperial

Presented by the California Department of Education, California County Superintendents Educational Services Association/County Offices of Education, K-12 Alliance @WestEd, California Science Project, and the California Science Teachers Association.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

The Teaching and Learning Collaborative, Reflections from an Administrator

Posted: Friday, January 19th, 2018

by Kelly Patchen

My name is Mrs. Kelly Patchen, and I am proud to be an elementary assistant principal working in the Tracy Unified School District (TUSD) at Louis Bohn and McKinley Elementary Schools. Each of the schools I support are Title I K-5 schools with about 450 students, a diverse student population, a high percentage of English Language Learners, and students living in poverty. We’re also lucky to be part of the CA NGSS K-8 Early Implementation Initiative with the K-12 Alliance. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

2018 CSTA Conference Call for Proposals

Posted: Wednesday, January 17th, 2018

CSTA is pleased to announce that we are now accepting proposals for 90-minute workshops and three- and six-hour short courses for the 2018 California Science Education Conference. Workshops and short courses make up the bulk of the content and professional learning opportunities available at the conference. In recognition of their contribution, members who present a workshop or short course receive 50% off of their registration fees. Click for more information regarding proposals, or submit one today by following the links below.

Short Course Proposal

Workshop Proposal Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

CSTA’s New Administrator Facebook Group Page

Posted: Monday, January 15th, 2018

by Holly Steele

The California Science Teachers Association’s mission is to promote high-quality science education, and one of the best practice’s we use to fulfill that mission is through the use of our Facebook group pages. CSTA hosts several closed and moderated Facebook group pages for specific grade levels, (Elementary, Middle, and High School), pages for district coaches and science education faculty, and the official CSTA Facebook page. These pages serve as an online resource for teachers and coaches to exchange teaching methods, materials, staying update on science events in California and asking questions. CSTA is happy to announce the creation of a 6th group page called, California Administrators Supporting Science. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.