September/October 2017 – Vol. 30 No. 1

Laying the Foundation: Our NGSS Journey of Getting Elementary School Students Ready for Middle School

Posted: Thursday, January 12th, 2017

by Kim Chanda, Janel Poon, and Richard Yang

Providing quality science instruction at the elementary level is an endeavor for many general education teachers. Although intimidating, science instruction in elementary school allows students to develop skills that will enable them to compete in an increasingly scientific and technological society. As California NGSS K-8 early Implementation Initiative Teacher Leaders for Aspire Public Schools, a charter organization that focuses on providing education for underserved students in low-income neighborhoods, Richard Yang and Kim Chanda are elementary science specialists, and Janel Poon is a 6th-grade middle school science teacher.

The position of K-5 science specialist allows Richard and Kim to teach every student at their elementary site. This allows them to develop their students’ scientific understanding from one year to the next. Their elementary schools feed into Janel’s middle school, where the Next Generation Science Standards (NGSS) is continued, and practices introduced in the elementary grades can continue to grow in sophistication. Having the students feed into a common middle school allows us to monitor their learning well after they have left our site. In the three years we have been a part of this grant teaching the NGSS and emphasizing the development of student competence in the science and engineering practices, we have been able to observe our students develop through elementary to middle school and improve their understanding of scientific principles.

As teacher implementers, starting work at the beginning of this grant was an overwhelming process. During our journey, we sought out to gain a deeper understanding of the three dimensions of the NGSS for ourselves. The three dimensions being: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. As we unraveled the dimensions, we chose “Develop and Using” models, one practice out of the Science and Engineering Practices to focus our attention on.

First, we needed to redefine what we knew as “modeling.” Before the NGSS, we believed the kids were modeling when they would make a poster showing the water cycle with definitions. As we began learning about the NGSS vision of modeling, we learned that the students weren’t modeling at all they were making a “posterization” of information. A “posterization” does not actually show the student’s depth of knowledge or understanding of a scientific principle, instead, it might feature a drawing and some definitions they could have copied from a textbook. In the NGSS, a scientific model shows the students thinking and reasoning of a scientific principle. It includes drawn pictures of the seen and unseen and student written explanations of their understanding based on observations and experience. Models are made to help generate questions, predictions, and explanations. As a unit of study continues and more information is revealed, models are meant to be revised and edited to show a change of understanding from before. Discovering our own misconception we had in modeling made our focus more attainable.

Next, we implemented scaffolded models in each grade level. Students were expected to draw, explain and revise their understanding of the phenomenon they were learning, increasing the complexity of the models as the grade levels progressed. For example, in grades K-2, our focus was to get students to model what they observed by drawing pictures and labeling them. In grades 3-5, our focus was to build on what students learned in K-2 by having the students model the scientific principles behind their observations, the unseen, and to explain their models in writing. Scientific modeling is also a practice that is easily differentiated for our high English language learner population and students with special needs since no model is expected to look the same. Also, the use of pictures to explain their thought process was a good starting point for many English learners and special needs students. We found that when the students would model on whiteboards they were more likely to take risks when making explanations because they knew they would be revising it later on.

As the students progressed through the elementary grade levels, modeling became a part of an everyday occurrence. Modeling became second nature to students, and they began to use modeling to explain their reasoning without being prompted to do so.

As our students advanced into middle school, teachers began to notice the influence of elementary science education on their understanding of middle school science concepts. Students that had previously completed Richard and Kim’s fifth-grade classes were better able to use modeling to describe scientific principles, cause and effect relationships, and unseen phenomena, compared to students from outside schools. In addition, our Aspire students were more likely to collaborate with others, question deeper, look at the relationships between phenomena, and understand concepts at an abstract level.

Students who come from our Aspire elementary schools are quick to use as models to show their reasoning. They are creative in showing different ways of making connections of in-class investigations to the real world. Students who did not come from Aspire elementary schools needed more prompting and scaffolding to create models beyond a picture of the observable. It is imperative that students begin to learn science at the elementary level.

Science education at the elementary level is important in developing young minds. As grades K-5 science specialists, we have a limited amount of time per week with our students, but even just focusing on a piece of the three dimensions has shown that even a limited amount of quality science instruction is better than nothing. A little goes a long way!

Kim Chanda is an elementary science specialist for Aspire Public Schools, a teacher leader for the K-12 Alliance California NGSS K-8 Early Implementation Initiative, and a member of CSTA.

Janel Poon is a middle school teacher for Aspire Public Schools, a teacher leader for the K-12 Alliance California NGSS K-8 Early Implementation Initiative, and a member of CSTA.

Richard Yang is an elementary science specialist for Aspire Public Schools, a teacher leader for the K-12 Alliance California NGSS K-8 Early Implementation Initiative, and a member of CSTA.

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.

News and Happenings in CSTA’s Region 1 – Fall 2017

Posted: Tuesday, August 29th, 2017

by Marian Murphy-Shaw

Cal

This month I was fortunate enough to hear about some new topics to share with our entire region. Some of you may access the online or newsletter options, others may attend events in person that are nearer to you. Long time CSTA member and environmental science educator Mike Roa is well known to North Bay Area teachers for his volunteer work sharing events and resources. In this month’s Region 1 updates I am happy to make a few of the options Mike offers available to our region. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.