March/April 2017 – Vol. 29 No. 6

Laying the Foundation: Our NGSS Journey of Getting Elementary School Students Ready for Middle School

Posted: Thursday, January 12th, 2017

by Kim Chanda, Janel Poon, and Richard Yang

Providing quality science instruction at the elementary level is an endeavor for many general education teachers. Although intimidating, science instruction in elementary school allows students to develop skills that will enable them to compete in an increasingly scientific and technological society. As California NGSS K-8 early Implementation Initiative Teacher Leaders for Aspire Public Schools, a charter organization that focuses on providing education for underserved students in low-income neighborhoods, Richard Yang and Kim Chanda are elementary science specialists, and Janel Poon is a 6th-grade middle school science teacher.

The position of K-5 science specialist allows Richard and Kim to teach every student at their elementary site. This allows them to develop their students’ scientific understanding from one year to the next. Their elementary schools feed into Janel’s middle school, where the Next Generation Science Standards (NGSS) is continued, and practices introduced in the elementary grades can continue to grow in sophistication. Having the students feed into a common middle school allows us to monitor their learning well after they have left our site. In the three years we have been a part of this grant teaching the NGSS and emphasizing the development of student competence in the science and engineering practices, we have been able to observe our students develop through elementary to middle school and improve their understanding of scientific principles.

As teacher implementers, starting work at the beginning of this grant was an overwhelming process. During our journey, we sought out to gain a deeper understanding of the three dimensions of the NGSS for ourselves. The three dimensions being: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. As we unraveled the dimensions, we chose “Develop and Using” models, one practice out of the Science and Engineering Practices to focus our attention on.

First, we needed to redefine what we knew as “modeling.” Before the NGSS, we believed the kids were modeling when they would make a poster showing the water cycle with definitions. As we began learning about the NGSS vision of modeling, we learned that the students weren’t modeling at all they were making a “posterization” of information. A “posterization” does not actually show the student’s depth of knowledge or understanding of a scientific principle, instead, it might feature a drawing and some definitions they could have copied from a textbook. In the NGSS, a scientific model shows the students thinking and reasoning of a scientific principle. It includes drawn pictures of the seen and unseen and student written explanations of their understanding based on observations and experience. Models are made to help generate questions, predictions, and explanations. As a unit of study continues and more information is revealed, models are meant to be revised and edited to show a change of understanding from before. Discovering our own misconception we had in modeling made our focus more attainable.

Next, we implemented scaffolded models in each grade level. Students were expected to draw, explain and revise their understanding of the phenomenon they were learning, increasing the complexity of the models as the grade levels progressed. For example, in grades K-2, our focus was to get students to model what they observed by drawing pictures and labeling them. In grades 3-5, our focus was to build on what students learned in K-2 by having the students model the scientific principles behind their observations, the unseen, and to explain their models in writing. Scientific modeling is also a practice that is easily differentiated for our high English language learner population and students with special needs since no model is expected to look the same. Also, the use of pictures to explain their thought process was a good starting point for many English learners and special needs students. We found that when the students would model on whiteboards they were more likely to take risks when making explanations because they knew they would be revising it later on.

As the students progressed through the elementary grade levels, modeling became a part of an everyday occurrence. Modeling became second nature to students, and they began to use modeling to explain their reasoning without being prompted to do so.

As our students advanced into middle school, teachers began to notice the influence of elementary science education on their understanding of middle school science concepts. Students that had previously completed Richard and Kim’s fifth-grade classes were better able to use modeling to describe scientific principles, cause and effect relationships, and unseen phenomena, compared to students from outside schools. In addition, our Aspire students were more likely to collaborate with others, question deeper, look at the relationships between phenomena, and understand concepts at an abstract level.

Students who come from our Aspire elementary schools are quick to use as models to show their reasoning. They are creative in showing different ways of making connections of in-class investigations to the real world. Students who did not come from Aspire elementary schools needed more prompting and scaffolding to create models beyond a picture of the observable. It is imperative that students begin to learn science at the elementary level.

Science education at the elementary level is important in developing young minds. As grades K-5 science specialists, we have a limited amount of time per week with our students, but even just focusing on a piece of the three dimensions has shown that even a limited amount of quality science instruction is better than nothing. A little goes a long way!

Kim Chanda is an elementary science specialist for Aspire Public Schools, a teacher leader for the K-12 Alliance California NGSS K-8 Early Implementation Initiative, and a member of CSTA.

Janel Poon is a middle school teacher for Aspire Public Schools, a teacher leader for the K-12 Alliance California NGSS K-8 Early Implementation Initiative, and a member of CSTA.

Richard Yang is an elementary science specialist for Aspire Public Schools, a teacher leader for the K-12 Alliance California NGSS K-8 Early Implementation Initiative, and a member of CSTA.

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

California Science Curriculum Framework Now Available

Posted: Tuesday, March 14th, 2017

The pre-publication version of the new California Science Curriculum Framework is now available for download. This publication incorporates all the edits that were approved by the State Board of Education in November 2016 and was many months in the making. Our sincere thanks to the dozens of CSTA members were involved in its development. Our appreciation is also extended to the California Department of Education, the State Board of Education, the Instructional Quality Commission, and the Science Curriculum Framework and Evaluation Criteria Committee and their staff for their hard work and dedication to produce this document and for their commitment to the public input process. To the many writers and contributors to the Framework CSTA thanks you for your many hours of work to produce a world-class document.

For tips on how to approach this document see our article from December 2016: California Has Adopted a New Science Curriculum Framework – Now What …? If you would like to learn more about the Framework, consider participating in one of the Framework Launch events (a.k.a. Rollout #4) scheduled throughout 2017.

The final publication version (formatted for printing) will be available in July 2017. This document will not be available in printed format, only electronically.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for CSTA Awards Nominations

Posted: Monday, March 13th, 2017

The 2017 Award Season is now open! One of the benefits of being a CSTA member is your eligibility for awards as well as your eligibility to nominate someone for an award. CSTA offers several awards and members may nominate individuals and organizations for the Future Science Teacher Award, the prestigious Margaret Nicholson Distinguished Service Award, and the CSTA Distinguished Contributions Award (organizational award). May 9, 2017 is the deadline for nominations for these awards. CSTA believes that the importance of science education cannot be overstated. Given the essential presence of the sciences in understanding the past and planning for the future, science education remains, and will increasingly be one of the most important disciplines in education. CSTA is committed to recognizing and encouraging excellence in science teaching through the presentation of awards to science educators and organizations who have made outstanding contributions in science education in the state and who are poised to continue the momentum of providing high quality, relevant science education into the future. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for Volunteers – CSTA Committees

Posted: Monday, March 13th, 2017

Volunteer

CSTA is now accepting applications from regular, preservice, and retired members to serve on our volunteer committees! CSTA’s all-volunteer board of directors invites you to consider maximizing your member experience by volunteering for CSTA. CSTA committee service offers you the opportunity to share your expertise, learn a new skill, or do something you love to do but never have the opportunity to do in your regular day. CSTA committee volunteers do some pretty amazing things: Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

A Friend in CA Science Education Now at CSTA Region 1 Science Center

Posted: Monday, March 13th, 2017

by Marian Murphy-Shaw

If you attended an NGSS Rollout phase 1-3 or CDE workshops at CSTA’s annual conference you may recall hearing from Chris Breazeale when he was working with the CDE. Chris has relocated professionally, with his passion for science education, and is now the Executive Director at the Explorit Science Center, a hands-on exploration museum featuring interactive STEM exhibits located at the beautiful Mace Ranch, 3141 5th St. in Davis, CA. Visitors can “think it, try it, and explorit” with a variety of displays that allow visitors to “do science.” To preview the museum, or schedule a classroom visit, see www.explorit.org. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.

Learning to Teach in 3D

Posted: Monday, March 13th, 2017

by Joseph Calmer

Probably like you, NGSS has been at the forefront of many department meetings, lunch conversations, and solitary lesson planning sessions. Despite reading the original NRC Framework, the Ca Draft Frameworks, and many CSTA writings, I am still left with the question: “what does it actually mean for my classroom?”

I had an eye-opening experience that helped me with that question. It came out of a conversation that I had with a student teacher. It turns out that I’ve found the secret to learning how to teach with NGSS: I need to engage in dialogue about teaching with novice teachers. I’ve had the pleasure of teaching science in some capacity for 12 years. During that time pedagogy and student learning become sort of a “hidden curriculum.” It is difficult to plan a lesson for the hidden curriculum; the best way is to just have two or more professionals talk and see what emerges. I was surprised it took me so long to realize this epiphany. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.