May/June 2017 – Vol. 29 No. 7

Middle School Madness Part 2: Integrated Science Versus Coordinated Science

Posted: Thursday, November 12th, 2015

by Robert Sherriff

In my last article, I compared the integrated versus discipline-specific models of teaching science in middle school. In this article, I seek to dispel some misconceptions and refine the comparison of an integrated science program with a coordinated science program.

This past summer, I was honored to participate in presenting at the two Northern California NGSS Early Implementation Institutes. I was part of a science content cadre to which I brought both my 25 years of middle school teaching experience and my knowledge of NGSS (I was on the State Science Expert Panel and was Co-chair of the Curriculum Framework Criteria Committee – CFCC). Other members of the cadre included Bob Rumer, an innovative engineering professor who helped us incorporate the Engineering Standards, and an outstanding high school science teacher, Lesley Gates, who helped provide activities and pedagogy.

One part of our learning experiences for our 8th grade teacher participants was to involve them in a preview of a publisher’s “integrated” middle school instructional material. We engaged in a lesson from the material that was well-designed, interesting, and even fun. Although the publisher showed how the lesson fit into a series of lessons as part of its “integrated program,” there were no connections between disciplines.

I asked: “Where is the integration?” The teachers responded with: “What do you mean? This IS integrated!” It was apparent, at least to me, that while the lesson appeared to be part of a superb “coordinated” program, it was NOT integrated. Later, I spoke with another publisher who was visiting our institute, and after a short while, I realized his plan was also a coordinated, not integrated, program. Talking to a few more publishers and variety of classroom teachers confirmed what I had been coming to realize: it appeared a large number of science educators were confused about the difference between integrated and coordinated science.

Suddenly I experienced a red-flag moment and thought, “What’s wrong with this picture?” I remembered we worked diligently at the Science Expert Panel to create an integrated program, and the Framework committee continued to make edits to provide a detailed integrated example for the middle school models. Next, I sent out an email to many leading science educators all over California about their views of coordinated versus integrated. The responses were varied, which told me that within our practice, we desperately needed further clarification.

So what is the difference between the two ideas and why are we in this pickle? Simply stated, the difference between coordinated and integrated is the type of connections that can be made between and among the various fields of science. In a coordinated curriculum, discipline specific units in life, earth, chemistry and physics are all taught in a single year to the same students. It is up to the teacher to help students “remember when we talked about chemical reactions in chemistry? Well, photosynthesis is a chemical reaction.” In a coordinated model students could even be rotated each quarter between different teachers. In this case connections between the disciplines would then be rare or non-existent unless the teachers themselves were given time to integrate between the disciplines…and time is always in short supply.

In an integrated curriculum, content from different disciplines are bundled together, creating different learning than when the concepts are treated independently. Kathy DiRanna, Statewide Director, K-12 Alliance, summed up the differences between the two saying “’Coordinated’ would be when there is a structure (chapters or modules) in which each science is treated mostly as its own discipline with references to the other sciences. An example would be when chemical reactions are treated fully in a physical science unit, with references in the bio (e.g., photosynthesis) and earth (rock cycle) units. ‘Integrated’ is where the performance expectations (PEs) are bundled to include appropriate science, e.g., matter is conserved (physical) as evidenced by matter cycling in ecosystems (life) and in earth systems (earth science).”

Does it really matter if something is coordinated or integrated? To understand the history of this issue, I spoke with Dean Gilbert a leader of an earlier science reform movement, the SS&C (Scope Sequence and Coordination project), and a current advocate for integrated science. The SS&C, as far back as 1992, in the SS&C/National Science Teachers Association’s book, “The Content Core,” promoted every science every year. This movement was in response to research, which indicated that a typical science program “discourages real learning not only in its overemphasis on facts, but in its very structure which inhibits students from making valuable connections between facts.” The research from the SS&C program found the greatest success with student learning from programs that were truly integrated, rather than coordinated. This would support the point of view of the Science Expert Panel and the CFCC (Framework Committee) for the preferred integrated model.

The NRC Framework for K-12 Science Education (2011) reemphasizes these ideas with a concern that current K-12 science education “emphasizes discrete facts with a focus on breadth over depth, and does not provide students with engaging opportunities to experience how science is actually done.” The NGSS promote deeper, conceptual learning by moving away from the memorization of facts to performance expectations that include three dimensional learning.

One of the major shifts that came out of the NRC Framework for K-12 Science Education that both it and NGSS are striving for is making these connections between science disciplines. A primary vehicle to do so is with the “crosscutting concepts that unify the study of science and engineering through their common application across fields.” (NRC, 2011)

In addition to promoting these connections, an integrated model helps to emphasize these connections showing how science is practiced today thus promoting connections to an even greater degree. Integrated science also allows students to investigate and understand phenomena and provides rich, real-world experiences for them to investigate. Some examples of this we worked on in our cadre was to explore the gravitational effects on living things as well as how heat transfer is dealt with directly by living things and in relation to climate. We sought to blend or integrate components of Earth, Life, and Physical science for a deeper, connected understanding. To paraphrase the words of one of the 8th grade teachers from our group, “[t]he integrated curriculum will play well with my students because those who don’t like physics very much will have another possible way into the content with a life science or earth science connection.”

The table below helps to summarize some differences between integrated and coordinated science.

Integrated v. Coordinated Science Table

Integrated v. Coordinated Science Table

Coordinated science might seem easier and it allows a publisher to produce a coordinated program that can be sold as individual subunits, making it discipline specific, or with a “road map” to connect the individual sub units. Yet, unless the connections are really strong, the coordinated program will not optimize the student learning. Research on how people learn shows us that we learn best when we make connections to ideas already in our brain.

A past cadre member of mine, Dr. David Polcyn (Professor of Biology CSU, San Bernardino) responded to my email on this topic, and he reminded me that the main issue is that most people just don’t like change and somehow coordinated science feels like less change. Integrated science is new, and teachers will worry about the time and resources they will need to do a good job. It is difficult to get out of one’s comfort zone, and it won’t happen overnight. But not having good integrated textbooks is a concern. (Are you reading this, publishers?)

Dr. Polcyn said he started, as did most of us, not teaching integrated but now he said, “I can’t imagine teaching without integration…in fact, the thing I find hardest about teaching non-majors biology at the university is that I CAN’T expect students to have any knowledge of chemistry, math, or physics, which makes it very tough to teach biology effectively, without having them just memorize a bunch of facts and then regurgitate them back.”

Peter A’Hearn, a K-12 science specialist with PSUSD, helped clarify ideas on implementation and the difficulties in dealing with change. Peter convinced me that after all the concerns I’ve raised with regard to coordinated science, and, after talking with more science teachers about their concerns over implementation (the lack of time, resources and knowledge), maybe it is ok to start with a coordinated science program as a bridge. This could be a three-year plan to deal with concerns, and with each passing year, as the familiarity with NGSS with 3D learning improves, the concern of lack of knowledge is met. Units and lessons can be traded at each site to help with resources, and the power of an integrated year can be achieved. Some may want to implement a little faster.

An example of a slower phasing in of an integrated program was provided by Dean Gilbert who noted that the instructional transition from coordinated to integrated did not occur overnight in his district. In the initial development and implementation of SS&C in his district, the first year’s curriculum was approximately 70% coordinated and 30% integrated. By the third year of district implementation and curriculum refinement, the curricula for Years 1, 2 and 3 was 70% integrated and 30% coordinated. This evolution was a direct result of increased teacher content expertise, defining key conceptual links between disciplines, and then weaving links around a central phenomenon or essential question. The reform was a gradual, incremental process without losing sight of the end goal—to create a rigorous, engaging, inquiry-based science program for students.

For implementation, the approach I’ve taken is to start with the known, evaluating where I’m at now. I was doing a coordinated discipline focused program, with some integration when the connections were obviously needed to provide any depth in the content. Our old 1998 Standards and Framework encouraged this small amount of integration to occur at each grade level, but they of course were not 3D and did not develop the richness of connections that is called out for in the NGSS. To repeat, since this is also a misconception that some have, our old standards were discipline focused and there is a portion at each grade level that is already supposed to be integrated. This previous integration was a natural starting place for me. So, in 6th grade heat is naturally integrated with climate in both the old and new standards, and gravity is integrated with astronomy in 8th in both standards. A starting place is born, and my next step was to make these become the 3D learning that is called out for in NGSS in both grades.  My cadre presented these integrated portions at our Early Implementer Institutes this past summer.

In order to make a smooth transition to an integrated program a district and a site will need to provide the support of time, professional development and resource acquisition so that a smooth implementation can occur. The LCAP plan at each district must include the support of implementation to new standards including NGSS, and so the LCAP can become a resource for achieving an integrated model, and an integrated model improves scientific literacy for Californians sooner rather than later.

Robert Sherriff is a member of the Science Expert Panel, the Co-chair of the CFCC (California Framework Curriculum Committee), an I.B. Science Teacher at Winston Churchill Middle School in the San Juan Unified School District, and a member of CSTA.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

2 Responses

  1. I like the theory of integrated science, but the implementation worries me. Having taught middle school math and science for 23 years, I like to be very clear about what is the theme of my main units, what are the subunits, and how do subsidiary topics and lessons all fit together. I want them all to flow together nicely. I’m not afraid of change if it’s for the better, I just need to be convinced.

    I’m concerned that some of the NGSS thematic integration statements are misleading and the basis for integration may become disingenuously contrived.

    Two examples:
    I.
    Quote from Public Review Draft Framework:
    “A primary goal of this section is to provide an example of how to bundle the PEs into integrated groups that can effectively guide instruction in four sequential Instructional Segments. There is no prescription regarding the relative amount of time to be spent on each Instructional Segment. As shown in Figure 1, the overarching guiding concept for the entire year is that, ‘Climate arises from system interactions and strongly influences organism structures and behaviors.'” -CA Science Framework Draft Ch. 6 p. 1

    My comment:
    This is an example of the problem I have with the integrated model. Do we really believe that an *entire year’s overarching guiding concept* would be that climate strongly influences organism structures and behaviors? Of course climate influences organism structure and behavior, but so do a host of other factors – the needs for locomotion, nutrition, shelter, reproduction affect behavior and structure, while physiological requirements of respiration, excretion, circulation affect structure… Of course all these factors are influenced by the biome (hence climate) but it is misleading to present climate as the major factor, which this statement seems to do as an overarching guiding concept.

    II.
    Quote
    “Grade 8 – Instructional Segment 4: Sustaining Local and Global Biodiversity
    Guiding Questions:
    *What are the characteristic properties and behaviors of waves?
    *What human activities harm Earth’s biodiversity and what human activites help sustain local and global biodiversity?
    *How does communication technology encode information and how can digital technologies be used to help sustain biodiversity?” from p. 232 of Draft Science Framework, Table 8

    My comment:
    The instructional segment is on sustaining local and global biodiversity. The first guiding question has very little to do with this topic. Seriously, I’m going to get the students really excited about the theme of biodiversity and then study waves? Please.
    The second guiding question is GREAT! It makes total sense as a subsection of the Instructional Segment.
    The third guiding question is one of those I would say is really “stretching” to make a lot of disparate topics fit together. Yes, you can put them together, but is it *truly meaningful* to instruct students that the third major guiding question about how we can save biodiversity is to wonder how analog and digital signals combined with software and circuit boards can help us sustain biodiversity? I’m probably missing something here, but I would think that there would be other, more relevant issues to consider as logical subtopics of “Sustaining local and global biodiversity” – like a study of WHY we’d want to (basically that it takes time to create what Earth had 100 years ago). Subtopics could be: biomass related to diversity (ecological effects), a history of the fossil record diversity, appreciation of the time it takes for such diversity to evolve, a comparison of Archaean vs larger organisms’ genetic diversity and evolution, etc. I would think those subjects would much more closely correlate to the main theme than a contrived discussion of the use of digital technology to sustain biodiversity.
    Thanks for listening. I may be totally misunderstanding the point and would welcome any feedback that could enlighten me.

  2. Thank you so much for your well-articulated comment. I encourage you to also submit your comments regarding the curriculum framework to CDE if you have not already done so: http://www.cde.ca.gov/ci/sc/cf/scifw1st60daypubreview.asp.

Leave a Reply

LATEST POST

Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here: https://www.surveymonkey.com/r/HappyAtoms

Please contact Rosanne Luu at rluu@wested.org or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.