May/June 2017 – Vol. 29 No. 7

Navigating the NGSS Change Process: Understanding the How, What, and Why

Posted: Monday, June 20th, 2016

by John Spiegel

Change is difficult. It requires significant shifts in thinking as we seek to understand what is changing and how we are supposed to implement those changes. Change can also be deeply emotional. It asks us to rethink the fundamental purposes and rationale for what we do, how we do it, and also why we do it. The Next Generation Science Standards (NGSS) introduce a vision for science education that shifts the way students experience and learn science and engineering. It also places significant demands on teachers to rethink how they plan, teach, and assess in the classroom. Educators respond to these changes with a variety of emotions, which must be considered as part of the NGSS implementation process.

Over the past several years, I have introduced NGSS to thousands of teachers and hundreds of administrators. During that time I have attempted to help them understand what NGSS is and how to implement the Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas into planning, instruction, and assessment. This work has sought to answer the questions of what and how described below.

‘What’ Questions

  • What are the NGSS?
  • What are the changes NGSS brings?
  • What are the dimensions of NGSS?
  • What is three-dimensional learning?

‘How’ Questions

  • How will NGSS affect how I plan, assess, and teach?
  • How do I teach with the three dimensions of NGSS in mind?
  • How do students learn in a three-dimensional classroom?

Recently I have come to realize that focusing only on the what and how is insufficient in supporting educators as they move through the NGSS change process. As I meet with and listen to teachers, I notice they respond to the new standards in a variety of ways, ranging from excitement and enthusiasm on one extreme to dread and negativity on the other. I observe teachers who soak up new information like a thirsty sponge while others fold their arms and shut down. The difference between these extremes comes down to having a personal understanding of why it all matters in the first place. Answering questions of why are as important as questions of what and how.

‘Why’ Questions

  • Why is important for me to implement NGSS?
  • Why should students in my classroom experience science differently?
  • Why should I do things differently?
  • Why does three dimensional teaching and learning matter?

A review of NGSS literature, including the Framework for K-12 Science Education1, the NGSS Appendices2, and the California Science Framework3, provide insights into these why questions. Answers are not just external knowledge, meaning we can outwardly say the right things in conversations with peers or administrators. They are more internal ideas and reflections that drive how we feel and what we believe about science teaching and learning. Our responses to the why questions ultimately shape what we do in the classroom. They also affect what we believe about the challenges and opportunities in science education, including student access and equity.

The connection, or disconnection, between what we know and believe is an important aspect of the change process and affects teachers willingness and readiness to implement the NGSS4. A teacher who knows how the Science and Engineering Practices support language development and also believes all students, including English learners, can participate fully in scientific processes will seek ways to scaffold instruction accordingly. Conversely, a teacher who knows that three dimensional learning is important but does not believe it will improve student performance on statewide assessments will struggle to implement NGSS in their classroom.

Figure 1 below describes the connection between questions of what, how, and why (shown in purple) and key emotions teachers often feel as they build their capacity to implement NGSS (shown in red). When educators can answer questions of what, how, and why, they feel empowered to change and take action. They are the ones who advocate for their needs, including time to collaborate, plan, and build capacity of themselves and others in their school or district. Empowered teachers recognize the importance of deepening understanding of NGSS and are willing to struggle and learn as they begin implementing three-dimensional lessons in their classroom.

Figure 1 Image Source: J. Spiegel personal collection

Figure 1
Image Source: J. Spiegel personal collection

If teachers can only answer questions of what and how, but do not clearly understand why, they might feel resistance to change. This is often felt in the individual who is asked to do things differently in their classroom and is being shown how, but does not yet understand why they need to do it and why the extra effort is worth it.

If teachers can only answer questions of what and why, but do not know how to do it, they often feel frustration. An example of this is an educator who understands what NGSS is and knows why it is important for students, but does not know how to plan lessons or instruction aligned to performance expectations and the three dimensions.

Finally, if teachers can only answer questions of why and how, but not what, they sometimes feel incapable of implementing the change. This might be the person who knows why they need to change the way students experience science and have been given three-dimensional lessons, but does not have sufficient knowledge of the Science and Engineering Practices or Crosscutting Concepts to implement that lesson.

As educators continue to navigate the NGSS change process, it is important for them to take the time to reflect on their own understanding of questions of how, what, and why. One goal of professional learning should be to help empower teachers and administrators as they move from awareness to implementation of NGSS. The road ahead is not easy. Change is difficult. The reward is a generation of children who have an appreciation for and a love of science.

For more help, feel free to contact Kirk Brown, director of STEM at the San Joaquin County Office of Education at kbrown@sjcoe.net, Maria Simani from the California Science Project at maria.simani@ucr.edu, or Kathy DiRanna, WestEd’s K-12 Alliance Statewide Director, at kdirann@wested.org. The CSTA NGSS page is also a wonderful resource, and can be located at http://www.classroomscience.org/category/ngss.

Acknowledgements: Thank you to Chelsea Cochrane (San Diego County Office of Education) and Jennifer McCluan (San Diego Unified School District) for their insights and feedback in developing this article.

John Spiegel is a Science Coordinator at the San Diego County Office of Education. He is available by email at john.spiegel@sdcoe.net and can be followed on Twitter at @sdngss.

—————————–

1 The Framework for K-12 Science Education is available at http://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts.

2 The NGSS Appendices can be found at http://nextgenscience.org/get-to-know.

3 The CA Science Framework is available at http://www.cde.ca.gov/ci/sc/cf/scifw1st60daypubreview.asp.

4 The Relationship between Teachers’ Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices (2012). Taken from http://www.cde.ca.gov/ci/sc/cf/scifw1st60daypubreview.asp.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Leave a Reply

LATEST POST

CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or zi@cascience.org.)

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.