November 2015 – Vol. 28 No. 3

NGSS and the Primary Classroom

Posted: Thursday, May 2nd, 2013

by Michelle French

Since the public reviews of the Next Generation Science Standards have come to a close, like many primary teachers, I’ve been wondering what science will look like in kindergarten, first, and second grade classrooms. When I reviewed NGSS, its three dimensions were initially overwhelming to me. Then I took a deep breath… reread the document… and realized that the blending of NGSS’s three dimensions: Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts, actually created an environment for young students to not only know science content, but know how to act, think, and reason scientifically.

I was pleasantly surprised when I saw just how many of the concepts from the three dimensions my students and I were already exploring in my life science learning sequence. The sequence actually began many months before formal instruction began: my first grade students and I made frequent observations about the changes in the artichoke plant growing in the garden in front of our classroom. The standards students would be exploring were the current first grade standards: LS: 2a, 2b, 2e and IE: 4a-b. (CA State Science Standards for First Grade)

To organize the new learning sequence, I used the “5E” lesson design from K-12 Alliance. The 5E design consists of: Engage, Explore, Explain, Evaluate, and Extend. I have attached a shortened version on the lesson sequence. The attachment shows the “Engage” and “Explore” sections. In the Explore section, you will only see Day 5 in explicit detail. Know that the other four days followed a similar plan and addressed different structures. By mapping out the learning sequence, I was able to identify opportunities to highlight the NGSS Crosscutting Concept of “Structure and Function” repeatedly (see photo 5).

By the time we officially begin our learning sequence; my students had already developed many authentic questions about the artichoke plant. Students were encouraged to ask questions, and I recorded them on chart paper (see photo 1) that was left hanging on the wall throughout the learning sequence. Many student questions guided the inquiry process and we frequently referred back to them. This part of the learning sequence could be the NGSS equivalent in the Science and Engineering Practice dimension as “Asking Questions and Defining Problems.”

As we later began the “Engage” section, students drew upon their prior knowledge about living things, with plants in particular (see photo 2). This tied in with the NGSS Science and Engineering Practice, “Constructing Explanations and Designing Solutions,” which specifically states, “…solutions in K-2 builds on prior experiences and progresses to the use of evidence or ideas in constructing explanations….” It is imperative that students surface not only their accurate evidence and ideas, but also their misconceptions at the beginning of the learning sequence. This information needs to be explicitly recognized in order to allow students to connect and reconcile their new conceptual understandings of content with their previous understanding.

As we moved through the learning sequence, students used other components of the Science and Engineering dimension. For example, “Developing and Using Models” encourages students to record their knowledge in various ways (see photo 4). Throughout this sequence, students made diagrams and drawings that demonstrated the relationship between the plant’s structures and their functions. Additionally, “Obtaining, Evaluating, and Communicating Information” calls for students to read “grade appropriate texts.” This is part of the Explore section that I did not include in the plan itself. After the Explore section was completed, we turned to our adopted consumable science textbook. It was then that students could compare and contrast what they had learned in their direct observations and experiences with the information from the textbook and they could relate their understandings directly to the textbook. This process gave validity to what they experienced first-hand.

Not only do the NGSS allow us to rethink what we are doing specifically in science, they make direct connections to Common Core State Standards in both language arts and mathematics. As we teach science, we will be able to provide real, authentic reasons for listening, speaking, reading, writing and engaging in mathematical thinking. Common Core and NGSS have a beautiful synergy. It is time to stop teaching factoids and begin teaching for deeper, more meaningful understandings of content. The primary grades have an awesome responsibility of setting the foundation for this synergistic type of teaching and learning.

Again, I was pleasantly surprised to realize that many of the practices my students and I were engaging in are explicitly explored and refined in NGSS. I hope that this 5E learning sequence has highlighted some of the NGSS components for you. This lesson is just a beginning for me, and I hope that when our new science standards are adopted, primary teachers come to embrace the wonderful opportunities they provide for our young students.

Please, visit the NGSS website: for more information. Many of the supporting documents are still available to review even though the main document has been removed for revision. The NGSS final draft will soon be available for us. I encourage all primary teachers to have a voice and comment on the final document.

Photo 1: Engage:  Student’s Authentic Questions

Photo 1 – Engage: Student’s Authentic Questions

Photo 2 – Engage:  Accessing Students’ Prior Knowledge

Photo 2 – Engage: Accessing Students’ Prior Knowledge

Photo 3 – Explore:  Classroom artichoke sample

Photo 3 – Explore: Classroom artichoke sample

Photo 4 – Explore:  Classroom garden artichoke

Photo 4 – Explore: Classroom garden artichoke

Photo 5 - Highlighting the NGSS Crosscutting Concept of “Structure and Function”

Photo 5 – Highlighting the NGSS Crosscutting Concept of “Structure and Function”

Written by Michelle French

Michelle French is a STEM Curriculum Specialist at the Tulare County Office of Education, was CSTA’s primary director (2011-2013), and is a member of CSTA.

One Response

  1. Awesome stuff Michelle!

Leave a Reply


Your Chance to Review the California Science Curriculum Framework Is Here

Posted: Tuesday, November 17th, 2015

by Laura Henriques

The California Science Curriculum Framework & Evaluation Criteria document is now ready for its first 60 Day Public Feedback period.! This is a critical process for the review and vetting of the document. Anyone from around the state is invited to read the document and provide feedback. CSTA encourages its members to participate in this process.

Just to be clear, the California Curriculum Framework is different from the NRC Framework for K-12 Science Education. The NRC Framework is the document which guided the development of Next Generation Science Standards. The California Curriculum Framework is the document which will help us make sense of those standards in our classrooms. Learn More…

Written by Laura Henriques

Laura Henriques

Laura Henriques is a professor of science education at CSU Long Beach and past-president of CSTA. She serves as chair of CSTA’s Nominating Committee and is a co-chair of the NGSS Committee.

Call for Nominations for the 2016-2018 CSTA Board of Directors

Posted: Thursday, November 12th, 2015

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There is a time and energy commitment, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interesting in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Middle School Madness Part 2: Integrated Science Versus Coordinated Science

Posted: Thursday, November 12th, 2015

by Robert Sherriff

In my last article, I compared the integrated versus discipline-specific models of teaching science in middle school. In this article, I seek to dispel some misconceptions and refine the comparison of an integrated science program with a coordinated science program.

This past summer, I was honored to participate in presenting at the two Northern California NGSS Early Implementation Institutes. I was part of a science content cadre to which I brought both my 25 years of middle school teaching experience and my knowledge of NGSS (I was on the State Science Expert Panel and was Co-chair of the Curriculum Framework Criteria Committee – CFCC). Other members of the cadre included Bob Rumer, an innovative engineering professor who helped us incorporate the Engineering Standards, and an outstanding high school science teacher, Lesley Gates, who helped provide activities and pedagogy. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

The Tree Room: A New Online Resource for Teaching Evolutionary Relationships

Posted: Thursday, November 12th, 2015

by Anna Thanukos, Teresa MacDonald, David Heiser, and Robert Ross

Understanding evolutionary trees is important for students because trees visually represent the idea that all life is genealogically linked. This powerful idea, tied to Next Generation Science Standards MS-LS4-2 and HS-LS4-1, is one of those most fundamental concepts that biological evolution offers to explain the biological world. The implication is that any set of species, no matter how distantly related, share common ancestors at some point in evolutionary history. Evolutionary trees are an efficient way to communicate that idea. It turns out, however, that evolutionary trees are not quite as straightforward to interpret as they may at first appear — so where can a teacher turn for a user-friendly introduction to their use in the classroom? Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

Ship That Chip: Teaching Engineering by Using Snacks

Posted: Thursday, November 12th, 2015

by Joanne Michael

When a new school year begins, almost every student (and teacher) is excited, motivated, and ready to work hard. Almost as quickly as it began, however, the “newness” of the school year wears off, and the students are in need of something new to recharge them. At the same time, teachers attempting to implement NGSS (even if not in full implementation mode) are getting tired, and may need a pick-me-up of their own. Enter the “Ship the Chip” challenge! Learn More…

Written by Joanne Michael

Joanne Michael is the K-5 science specialist at Meadows Elementary in Manhattan Beach, CA, and CSTA’s intermediate grades 3-5) Director.