May/June 2017 – Vol. 29 No. 7

NGSS – Putting the STEM in STEM

Posted: Friday, December 11th, 2015

by Peter A’Hearn

“Our proposed design uses waves with a frequency of 5,000 Hz to detect the tumor. We are getting our best resolution of the tumor when we are 7 cm away, which is one wavelength of the sound waves that we are using. Our proposed App would include a set of wheels for smooth tracking and image the body as a grid to help determine location.”

Is this an episode of Shark Tank? No this was a group of teachers at the Project Prototype* 2015 Summer Institute. Project Prototype is a California Math Science Partnership Grant in the Coachella Valley focused on the integration of science and engineering through the NGSS. Secondary science teachers were focusing on the middle and high school standards on Waves and their Applications in Information Technology. The week began with a visit to the Desert Regional Medical Center where teachers got to learn about and experience the different uses of waves in medical imaging technology from the ultrasound used to view soft tissue, to X-rays, CAT scans, MRI, and PET. A highlight was the Stereotaxis Machine used to visualize and guide a catheter to a stroke in a patient’s brain.i-phoneThe STEM movement aims to teach students how to use the related fields of Science, Technology, Engineering, and Math to solve problems and access careers in high paying, high skill fields. There are many varied opportunities for kids to be involved in STEM, from after school robotics clubs, Career Technical Education (CTE) pathways, and special STEM and Engineering elective programs like Project Lead the Way and Engineer Your World. These are powerful programs, but they do not reach all kids.

How can we make sure that ALL kids get some rich learning about how Science, Technology, Engineering, and Math work together? The answer is that STEM is built into NGSS. NGSS has strong STEM connections built in with its engineering-specific Performance Expectations (PEs), the many PEs at all grade levels that incorporate engineering design and thinking, and also through the Science and Engineering Practice of “Using Mathematical and Computational Thinking.”

Lots of teachers (me included) saw that one and thought, “Oh, I already use math – I do that already.” So, if you haven’t read that one carefully, go back to the NRC’s Framework. It’s asking for computers: Computers to run algorithms, computers to handle large data sets, computers to run simulations. All of which are important parts of how real life scientists and engineers do their jobs.

ahearnBack at the institute, the teachers used long springs to find the mathematical relationship between the frequency and wavelength of standing waves. They were then introduced to Anechoic, a free iPhone App developed by Dr. William Grover of the Department of Bioengineering at the Bourns College of Engineering, University of California, Riverside. Anechoic uses both the speaker and the microphone of an iPhone to send out a sound at a certain wavelength and record its echo, like a sonar. The teachers used Anechoic to explore how sound waves interact with various materials.

In exploring the App, teachers discovered that the properties of the waves used strongly influences the way the waves interacted with different materials. They also discovered the wave property of interference.Teachers then had to put themselves into the role of engineers trying to develop an iPhone based device that could visualize a tumor using sound waves. The “tumor” was an old compact disk hidden behind a black cloth screen, and the teachers used the Anechoic app to visualize the tumor with sound. This led to the “Shark Tank” Proposal described above. Teams needed to describe the waves used mathematically as well as how they worked to visualize the tumor. They needed to address a list of criteria and constraints for real world medical devices in the design and explain how they would further develop the device if they were funded.

ahearn_screenshotThe group took some time to look at how programming in the Python language can be used to take a huge raw data set and turn it into an easy to understand visual display. A sound-recording app like Anechoic makes 44,000 sound measurements per second, so it can generate very large data sets very quickly. Data like this is virtually impossible to analyze without a computer, and the teachers saw firsthand how a simple Python program can perform this analysis. They saw that with small changes to the code, they can create many different ways to look at the Anechoic data sets to study different aspects of the signal. We were running short on time, but wished we could have had opportunities to explore this rich subject further.

The week ended by bringing the learning back to the hospital context. Teams of teachers were put into the role of hospital administrators who had to decide which medical imaging technologies to purchase given a limited budget. This engaging lesson comes from a new middle school curriculum from STC.

Hopefully this summer learning can be an example of how the real world context of STEM can give meaning and purpose to science learning. The convergence of Science, Technology, Engineering, and Math is where many of our student’s bright futures lie. NGSS is the vehicle that will get them there. This will require hard work by teachers and students, some big shifts in how we think science learning happens, and lots of creative work designing curriculum and resources.

ahearn_2*Project Prototype is a partnership between Coachella Valley USD, Palm Springs USD, The UCR Bourns School of Engineering, CSU San Bernardino, and the College of the Desert. Community partners include the Coachella Valley Economic Partnership, SMART Education, The Children’s Discovery Museum of the Desert, Linked Learning and others. It is a California Math Science Partnership (CaMSP) funded by the California Department of Education.

Pete A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is region 4 director for CSTA.

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Leave a Reply


Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here:

Please contact Rosanne Luu at or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.