May/June 2017 – Vol. 29 No. 7

Ocean’s Music: Climate’s Dance

Posted: Tuesday, May 6th, 2014

By Jill Grace

As a teacher beginning to explore how to move ahead with the Next Generation Science Standards, I’ve been challenging myself to see how I can transform some of my current content. For example, I’ve recently been teaching my 7th graders about how geology and climate drive biology (to support the 1998 California standard, 7.4.d). Previously as 6th graders, they explored concepts related to heat distribution in the oceans and atmosphere (6.4.d and 6.4.e). When I tease out just the climate piece of my instruction, and consider the relationship between ocean and climate, it’s easy to see how rich the topic is, that it easily supports many of the shifts called for in NGSS, and that the topic works well with either middle school progression of NGSS.

The theme of exploring the relationship between the ocean and climate is not only an important issue on a local and global scale, it also serves as a great vehicle to bundle core science ideas, crosscutting concepts, science and engineering practices, and nature of science themes. There are also easy connections to Common Core standards, as the exploration of the topic requires students to work with rich text, determine central ideas, evaluate claims, and analyze data, among other skills. For this article, I’ll share some of my favorite resources that have helped me wrap my head around climate change. In some cases, I even use the resources directly with my middle school students, as I’ve never felt that a standard classroom textbook has been enough to support this topic. Finally, I’ll share my efforts at playing with bundling the performance expectations of NGSS.

I’ll never forget the first time I saw this poster highlighting NASA’s Jet Propulsion Lab’s Jason-1 expedition, which began in 2001:

Poster highlighting NASA’s Jet Propulsion Lab’s Jason-1 expedition.

Jason-1 was launched after the successful 1992 Topex/Poseidon project, the first time we ever saw the large-scale ocean patterns that lead to El Niño and La Niña weather patterns. Both Jason-1 and Topex/Poseidon focused on measuring the changes in height of the sea surface, which could provide the scientific community information about ocean currents beyond what ships and buoys could. Although I have a degree in marine biology and of course understood there were relationships between the ocean and climate, I didn’t really think about it on such a profound level until I saw that phrase, “Ocean’s Music: Climate’s Dance”. Even then, though, the scientific community was just really scratching the surface of understanding the complexity of that relationship. In the thirteen years since I first saw this poster, the field, along with our knowledge, has exploded.

The very deep relationship between our oceans and climate is one of the most important scientific ideas we are charged with helping students understand. With about 71% of our planet covered in ocean, it is no wonder that the ocean has a profound impact on climate, and vice versa. There is also no question that this will be one of the greatest societal issues we will face in the coming decades. When I look to the future and imagine my students emerging into the world as adults raising their own families and voting on policy, I want them to understand the science behind that relationship. By focusing on what ocean research can tell us about climate, we can present our students with a window to understanding mechanisms, amplifiers of past climate change, and signals of current climate change.

Advertisement

Advertisement

Thinking about this topic and planning for NGSS, I am most intrigued by the changes in instruction that will come from having students work more with real time data and its role of modeling in science, which is used extensively in ocean-climate investigations. Thus, I challenged myself to introduce my students to a climate model, which help scientists understand and predict climate. More and more models today also explore the consequences of climate change and make the connections between recent global mean temperature increases and human activity. The model I chose to share with my students was published by the Intergovernmental Panel on Climate Change’s Fourth Assessment report (9.4.1.2 Simulations of the 20th Century).

I was introduced to this model at a teacher institute hosted by NASA’s Jet Propulsion Lab last summer. It is used to test the hypothesis that modern global temperature trends are the result of natural forcings on climate (those not attributed to humans – anthropogenic forcings). I had a couple of my 7th grade classes this year work with figure 9.5:

Figure 9.5

Although it went over the heads of a few, most of them were able to make sense of it. They were really excited to see the trends following volcanic eruptions and were eager to hypothesize why we don’t see a separation between the modeled and observed trends in the second graph, and they hypothesized why there was a difference when anthropogenic forcings were removed from the model. We also had a rich conversation that led the class to hypothesize why we don’t see a separation in the modeled vs. observed trend (in the second graph) until around 1960. The kids were able to make the connection between the dramatic rise in the human population and that probably all the “baby boomers” born after World War II had grown up and now have their own homes, drive their own cars, etcetera.

All models make assumptions. Because of this, climate models, which are very complex and involve mathematical inferences of things like trends or statistical thresholds, are sometimes criticized because researchers have to make such mathematical assumptions. This, by the way, is normal in mathematics, statistics, and modeling in general, and why researchers disclose their assumptions and the limitations of their models. Besides computer modeling of climate change, we can also model aspects of climate change in a different but really clever way. Scientists can use direct observations of phenomena related to El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO). These are the most common types of repetitive shifts in the ocean/atmosphere circulation. These direct observations can be used to create small-scale models, which can in turn be used to predict the effects of such climate shifts on a much larger scale (longer duration). These small models also provide scientists a window of understanding of the implications of climate change on living things (for example, which types of species thrive vs. those that seem to decline, what seems to trigger populations shifts, etc.). You can’t always get a clear understanding of this at large scale because it’s too large; there are so many confounding factors. It’s easier to take the small scale, wrap your head around it, and model it to “big”. Revisiting the topic of ENSO with my students in 7th grade helps them understand that we can predict the effects of changes in ocean temperature and its impact on climate. The Nature Education Knowledge Project offers a nice non-fiction reading source on this with links back to primary literature that can help both teachers and students explore the effects of such oscillations.

The topic of carbon, especially carbon dioxide, is unavoidable when exploring oceans and climate. Prior to our work on climate, I help my students explore the basics of carbon since they currently don’t formally receive that instruction until 8th grade. The National Oceanographic and Atmospheric Administration’s PMEL Carbon Program website is very informative and helped me refresh my own understanding. A few resources that my students have enjoyed are this carbon cycle activity and this series of carbon videos. Perplexed by information on past global CO2 levels, my students constant ask, “How do they know this?” so I also make attempts to connect them to active research in the field. My students especially like learning how scientists gather data on past CO2 concentrations in the ocean by using sediment cores. This video about the Lamont-Doherty Sediment Core Repository is one they have enjoyed. I’m looking forward to the scheduled July launch of a new NASA Satellite, the Orbital Carbon Observatory-2, also being developed by the Jet Propulsion Lab in Pasadena and which should provide even more information about CO2 as it will gather information about global geographic distributions of CO2 sources and sinks through sophisticated computer modeling. A carbon observatory from space will allow scientists to measure regions of the world currently too difficult to study. I will certainly be connecting my students with this mission!

Diving even deeper, students can make connections between the CO2 concentrations and living things. Studying the relationship between CO2 concentrations and ocean acidification and its subsequent impact on marine invertebrates can help students see the consequence of too much carbon in the global system. Once again, the Nature Education Project has a great synopsis of this, as does the Oceanus Magazine of the Woods Hole Oceanographic Institution (I recommend the multimedia interactive on how animals build their shells).

There is so much more to explore. A gold mine of lesson plans related to climate can be found at the Climate Literacy & Awareness Network (CLEAN) website. The National Center for Science Education also recently adopted climate change as one of its core missions. Their website has many resources to support climate education in the classroom. Further, NASA has a tremendous amount of on-line content to support this. I particularly like the toolbar at the top of the page displaying the current data:

Image source: http://climate.nasa.gov

Image source: http://climate.nasa.gov

Exploring the connection between oceans and climate with your students is a great interdisciplinary way to make big-idea connections in content, have students work with modeling as a scientific practice, and has amazing potential to connect students to an active field of scientific research. Below is my attempt to show how this deep topic can be translated to NGSS. Hopefully this might inspire your future lesson planning.

Special thanks to Dr. Mike Gunson, Scientist at the Jet Propulsion Laboratory, California Institute of Technology, for help with this article.

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is the President-elect for CSTA.

Leave a Reply

LATEST POST

Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here: https://www.surveymonkey.com/r/HappyAtoms

Please contact Rosanne Luu at rluu@wested.org or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.