September 2016 – Vol. 29 No. 1

Phenomena Are Jawsome!

Posted: Tuesday, September 15th, 2015

by Jill Grace

This past August, I worked as part of the Content Cadre for the K-12 Alliance @ WestEd’s California K-8 Next Generation Science Standards Early Implementation Initiative. My partners on the Cadre were Lisa Martin-Hansen (Science Education, California State University, Long Beach) and Ed Price (Physics, California State University, San Marcos) and it was our job to provide adult-level education to our 8th grade Teacher Leaders from five southern districts/charters (High Tech High, Lakeside, Palm Springs, San Diego, and Vista) at the VIDA School in Vista. In the process, we modeled what instruction using the NGSS could look like in their classrooms.

It was no small task! As you know, the NGSS is not curriculum and currently there are no state adopted instructional materials. There is no book to tell us what to do. We had our combined content knowledge, A Framework for K-12 Science Education (NRC, 2012), and the California NGSS to guide us. To plan for instruction, we began by considering an overall big picture for the year. We then followed the same set of steps you might have experienced in the Statewide NGSS Roll Outs: Conceptual Flow, Phenomena-Question-Practice (PQP) Charts (adapted from the Sacramento Science Project), and the 5E Learning Sequence to plan out our institute week. Despite planning, we also did some adjusting on the fly, based on learner needs, as you will likely do in your classroom.


– Advertisement –

It was our first step, thinking about “the big picture”, that I would like to focus on here. Those of you familiar with the California K-8 NGSS Early Implementer Initiative know that participating middle schools are following the California Preferred Integrated Model. This means that middle school content is a mixture of Performance Expectations (PE) from all of the disciplines, physical science, Earth and space science, life science, and engineering. To help envision what we thought the big picture was, we started throwing out ideas of things that might allow us to bundle PE’s across disciplines. At one point, our conversation went something like this:

Ed: “What if we looked at flight in birds?”

Jill: “I will be of more use to you if we stick with something marine. Oh!!! How about sharks? ”

My thinking was that biologists who try to understand sharks have to apply understanding of physical science (think technology that uses electromagnetic radiation and acoustic transmitters) to track and study sharks. Of course, my first instinct was to impress my colleagues by showing them a video of the REMUS Shark Cam. This brief video features a submarine robot used to track and observe sharks where the hunter becomes the hunted.

After lots of oh’s and ah’s, we suddenly realized we had our phenomenon!

You’ve heard of phenomena, yes? You know, those things in the world around you that spark curiosity and make you want to know more, to ask “How is this possible? Why is this happening?” Phenomena ignite excitement and interest and have that sneaky attribute of making you want to know all of their secrets. You investigate to understand, but are often left with more questions than answers. They make you wonder. They are the backbone of science and do not respect traditional disciplinary boundaries. Because of this, phenomena speak to the nature of science and therefore the 3-dimensional nature of the NGSS and the connection between disciplines. Remember, the National Academy of Sciences selected the DCI’s because they hold explanatory power across multiple disciplines.

I have yet to meet a kid that wasn’t interested in sharks. Yes, even kids who are “landlocked”, whether they live near or far and can’t get to the beach because of geography or economics. As humans, we are naturally drawn to sharks, despite that fascination being admiration, fear, or both. The topic naturally draws out many questions. After watching the REMUS video, our room was flooded with questions.


How do you know you have an engaging phenomenon? You run out of space recording observations and questions.

The phenomenon held the momentum for the entire week (aka, ”unit”). We decided to name our class “Team Jawsome” and jump in with all fins (toothy humor and all). The phenomenon inspired our “unit” big idea: Biologists apply understanding of physics, programming, and engineering to understand sharks.

Basically, sharks and shark tracking served as a “story line” and gave a reason to understand the physics. This allowed us to bundle several Disciplinary Core Ideas (PS2.B, PS4.A, PS4.B, PS4.C, ESS3.C, ETS1.A, and ETS1.B). In addition, the engaging phenomenon provided a rich context for 3-dimensional learning (blending the Science and Engineering Practices and Crosscutting Concepts). There were times when we would “geek out on the physics”, but always returned to the context of our phenomenon when we knew there was a new challenge to tracking sharks (for example, how would we accurately tag an underwater shark from a boat when refraction affects the image we see, or how would the tag send information to a satellite or receiver).

Sharks also gave us a context for understanding the impact humans have had on the local environment and why data from shark tracking was important to help us understand that. Sharks even gave us a special engineering challenge: how could we apply understanding of electrical interactions to design a salt-water switch (switch activates the tag’s transmitter when the shark comes to the surface), and how should we encode the data transmitted? We also continued to return to our questions generated by the REMUS video and starred those questions we were gaining a new understanding through our many investigations.

Sharks also allowed us to incorporate active scientific research by partnering with CSULB’s Shark Lab, directed by Chris Lowe. Not only did he help with our preparation and understanding the phenomenon of tracking sharks, he was able to bring graduate and undergraduate research students to the Early Implementation Institute to help inspire our Teacher Leaders with their work.

Shark Lab

CSULB Shark Lab Graduate Student, Ryan Logan, shows how the Vemco VR100 acoustic receiver and omni-directional hydrophone works.

Salt-water Switch

8th grade teachers engineering a salt-water switch.

I have been asked many times by teachers how to choose a phenomenon. There are probably a few key points to consider. In our case, sharks worked for us! Our team was enthusiastic about the phenomenon and we put in the leg-work (er, fin-work) spending time to make sure we understood the relevant disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCC). At some point, each of us found that if we didn’t have knowledge in one aspect of the content related to sharks and shark tracking (for me it was having no background knowledge of digital vs. analog signals), another team member did and, and with time and being a learner ourselves, we all achieved the understanding we wanted for our teachers. Some teachers may choose a phenomenon for a single DCI, but we decided to choose one that would allow us to bundle several in an integrated way. Teacher passion/enthusiasm for a phenomenon, a willingness to dig in and learn more, and the potential of the phenomenon to allow for an integrated experience are probably important components to consider.

A special part of this process for me personally was realizing that in order to make phenomena come alive for students (in this, case, our Teacher Leaders), teachers aren’t alone. Even without the support of a major initiative, there are a lot of scientists and engineers in your community that would gladly support you – all you have to do is ask! I encourage you to tap into your local resources (college/universities, businesses, informal science education centers, even organizations with on-line support). Sometimes folks are busy and have to say no, but it never hurts to ask. When Chris Lowe said yes, I knew we would add expertise and experience to our storyline.

Faculty and students representing Science Education, Biological Sciences, and Physics Departments from California State University, Long Beach and California State University, San Marcos joined together to support our 8th grade teachers. From left to right: Lisa Martin-Hansen (CSULB Science Education Department Chair), Ryan Logan (CSULB Shark Lab Graduate student), Sarah Luongo (CSULB Shark Lab Undergraduate research student), Chris Lowe (CSULB Shark Lab Director), Jill Grace (middle school science teacher and CSULB Science Education Department part-time lecturer), and Ed Price (CSUSM Physics Department Chair).

Faculty and students representing Science Education, Biological Sciences, and Physics Departments from California State University, Long Beach and California State University, San Marcos joined together to support our 8th grade teachers. From left to right: Lisa Martin-Hansen (CSULB Science Education Department Chair), Ryan Logan (CSULB Shark Lab Graduate student), Sarah Luongo (CSULB Shark Lab Undergraduate research student), Chris Lowe (CSULB Shark Lab Director), Jill Grace (middle school science teacher and CSULB Science Education Department part-time lecturer), and Ed Price (CSUSM Physics Department Chair).

Finally, we asked teachers to respond to the prompt, “I used to think… now I know…” You might be interested in some of the feedback we got from the teachers related to our use of sharks as a phenomenon to integrate science:

“I used to think…

… that California’s integrated model still stayed domain specific, just within a grade level. Now I know the integrated model can integrate all three domains in a unit.

… waves should be taught in a physics setting. Now I know it can be really engaging to loop in biological factors.

… that the NGSS was more one dimensional, shifting just content, and now I know it’s more 3-dimensional as there is increased focus on cross-cutting concepts and science and engineering practices.

…that teaching NGSS would be more difficult as a teacher because of the three dimensions. Now I know how engaging and student led it can be.

… waves were boring to teach, now I know they can be fun.

… storylines to teach science in an interesting way was impossible, now I know it isn’t.

… little research happened at the undergraduate level at many CSU’s and now I know that is not the case.

… it is difficult to apply physics in a simple way to biology education and now I know that is where so much meaning is found.

… that I had to give kids answers and now I know they can explore the answers and I don’t have to be the reference book.

… NGSS was so complicated, now I know there’s a method to the madness.

… Great Whites were scary, and now I would like to know more about the research on them.

… that the issue of ocean pollution was getting worse in our area, now I know that increases in the populations of top level aquatic predators are an indicator of the “health” of our oceans is getting better. I’ll be sure to pass on this positive message to my students, that humans (through environmental legislative action) can make a relatively quick impact on the environment. Thank you.

Through the use of a compelling phenomenon, we were able to build an engaging and integrated lesson sequence that connected well with middle school teachers.

You can follow Tweets that our Cadre and Teacher Leaders Tweeted during our institute week by searching @EarlyImplement or #CANGSS with #Jawsome. If you look really hard, you’ll even find a photo of our unit conceptual flow!

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is the President-elect for CSTA.

One Response

  1. Hey there–Thank you for sharing this. I work at a landlocked aquarium in Utah, where we try to teach guests about the world they may never get to visit, and to help develop a sense of need to preserve these natural habitats. Our outreach program is currently re-vamping our field trip on sharks (for grades 8-12), and we were asked to focus on a phenomenon to engage the students with. We, of course, want to encourage them to have a passion of their own for sharks and marine life/ecosystems. My coworker and I have decided that our main focus, our phenomena will explore shark myths, and help unravel the truth about these mystic creatures. I would love to hear more about your experience learning about sharks and the journey you have made learning to teach about your particular phenomena! Of course, this is just an invitation, but I would love to hear from you and have the amazing opportunity to discuss with you your findings!

Leave a Reply


California Science Assessment Update

Posted: Wednesday, October 12th, 2016

by Jessica Sawko

In June 2016 California submitted a waiver application to discontinue using the old CST (based on 1998 standards) and conduct two years of pilot and field tests (in spring 2017 and 2018, respectively) of the new science assessment designed to support our state’s current science standards (California Next Generation Science Standards (CA-NGSS) adopted in 2013). The waiver was requested because no student scores will be provided as a part of the pilot and field tests. The CDE received a response from the U.S. Department of Education (ED) on September 30, 2016, which provides the CDE the opportunity to resubmit a revised waiver request within 60 days. The CDE will be revising the waiver request and resubmitting as ED suggested.

At its October 2016 North/South Assessment meetings CDE confirmed that there will be no administration of the old CST in the spring of 2017. (An archive of the meeting is available at Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Some ways to celebrate the 100th anniversary of the National Park Service in your classroom

Posted: Thursday, September 22nd, 2016

by Carol Peterson

1) To celebrate the 100th anniversary of the National Park Service, Google has put together a collection of virtual tours combining 360-degree video, panoramic photos and expert narration. It’s called “The Hidden Worlds of the National Parks” and is accessible right from the browser. You can choose from one of five different locales, including the Kenai Fjords in Alaska and Bryce Canyon in Utah, and get a guided “tour” from a local park ranger. Each one has a few virtual vistas to explore, with documentary-style voiceovers and extra media hidden behind clickable thumbnails. Ideas are included for use in classrooms. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2016 Award Recipients – Join CSTA in Honoring Their Accomplishments

Posted: Thursday, September 22nd, 2016

CSTA is pleased to announce the winners of the 2016 CSTA Awards for Distinguished Contributions, Margaret Nicholson Distinguished Service Award, 2014 and 2015 PAEMST-Science recipients from California, and the 2016 California PAEMST Finalists. The following individuals and organizations will be honored during the 2016 California Science Education Conference  on October 21- 23 in Palm Springs. This year’s group of awardees are truly outstanding. Please join us in congratulating them!

Margaret Nicholson Distinguished Service Award

John Keller

John Keller

The Margaret Nicholson Distinguished Service Award honors an individual who has made a significant contribution to science education in the state and who, through years of leadership and service, has truly made a positive impact on the quality of science teaching. This year’s recipient is John Keller, Ph.D. Dr. Keller is Associate Professor, Cal Poly San Luis Obispo and Co-Director, Center for Engineering, Science, and Mathematics Education, Cal Poly San Luis Obispo. In her letter of recommendation, SDSU science education faculty and former CSTA board member Donna Ross wrote: “He brings people together who share the desire to make a difference in the development and implementation of programs for science teaching. Examples of these projects include the Math and Science Teaching Initiative (MSTI), Noyce Scholars Program, Western Regional Noyce Initiative, and the Science Teacher and Researcher (STAR) program.” Through his work, he has had a dramatic impact on science teacher education, both preservice and in-service, in California, the region, and the country. He developed and implemented the STEM Teacher and Researcher Program which aims to produce excellent K-12 STEM teachers by providing aspiring teachers with opportunities to do authentic research while helping them translate their research experience into classroom practice. SFSU faculty member Larry Horvath said it best in his letter:“John Keller exemplifies the best aspects of a scientist, science educator, and mentor. His contributions to science education in the state of California are varied, significant, and I am sure will continue well into the future.” Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

NGSS: Making Your Life Easier

Posted: Tuesday, September 20th, 2016

by Peter A’hearn

Wait… What?

NGSS is a big shift. Teachers need to learn new content, figure out how this whole engineering thing relates to science, and develop new unit and lesson plans. How could NGSS possibly make life easier?

The idea that NGSS could make our lives easier came to me during the California State NGSS Rollout #1 Classroom Example lesson on chromatography. I have since done this lesson with high school chemistry students and it made me think back to having my own students do chromatography. I spent lots of time preparing to make sure the experiment went well and achieved the “correct” result. I pre-prepared the solutions and organized and prepped the materials. I re-wrote and re-wrote again the procedure so there was no way a kid could get it wrong. I spent 20 minutes before the lab modeling all of the steps in class, so there was no way to do it wrong. Except that it turns out there were many. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Celestial Highlights, September 2016

Posted: Tuesday, September 20th, 2016

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graph of evening planet setting times by Dr. Jeffrey L. Hunt 

Our evening twilight chart for September, depicting the sky about 40 minutes after sunset from SoCal, shows brilliant Venus remaining low, creeping from W to WSW and gaining a little altitude as the month progresses. Its close encounter within 2.5° N of Spica on Sept. 18 is best seen with binoculars to catch the star low in bright twilight. The brightest stars in the evening sky are golden Arcturus descending in the west, and blue-white Vega passing just north of overhead. Look for Altair and Deneb completing the Summer Triangle with Vega. The triangle of Mars-Saturn-Antares expands as Mars seems to hold nearly stationary in SSW as the month progresses, while Saturn and Antares slink off to the SW. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.