September 2016 – Vol. 29 No. 1

Practical Tools to Begin Implementing the NGSS in a First Grade Classroom

Posted: Friday, May 13th, 2016

by Crystal Howe, Nicole Hawke, and William Straits:

Across the state, during the summer of 2016, hundreds of teachers of NGSS “Early Implementers” schools participated in professional development institutes designed to help teachers better understand NGSS and science pedagogy. During a week-long summer institute, we worked with 1st grade teachers to explore sound and light waves, while highlighting practical tools to help implement NGSS in classrooms. These tools included a KLEWS chart (Hershberger & Zembal-Saul, 2015) to focus science learning, a field trip structured to create opportunities for students to share their science thinking, and the Engineering Design Cycle from Appendix I of NGSS.

KLEWS is a graphic organizer that documents five steps in students learning: what students Know initially, what students Learn during investigations and what Evidence supports that learning, what students still Wonder after an investigation, and which Scientific principles/vocabulary explain the phenomena investigated. The KLEWS chart is a great way to take the well-known idea of KWL and expand it to show the importance of students’ evidence and the scientific principles students interact with.  While the KLEW chart has been around since 2006, it was recently updated to include the letter S.  While this addition may seem minimal, it is really at the heart of purpose behind the using the KLEWS chart, having students create scientific claims using the Claims, Evidence, and Reasoning Framework.



Our KLEWS chart focused on the question: What is sound? Through multiple Explore/Explain cycles the teachers were able to build learning, evidence, wonderings, and scientific principles from basic ideas they collected during investigations, such as vibrations cause sound, to the more difficult ones such as how sound waves move through different types of mediums. Even more useful, our teachers were able to use the Learning, Evidence, and Scientific principles of the KLEWS chart to construct strong scientific explanations at the end of the learning series, getting a hands-on experience of what it may look like for their first grade students.

We found the KLEWS chart to be a great scaffold to help elementary teachers in particular build in natural places throughout the investigation sequences, to encourage students to begin to build explanations. The hope at the elementary level is that we begin to repeatedly provide students with opportunities to document their learning as it progresses, taking away the fear of not knowing the “right” answer, and instead thinking of the evidence they have to support their learning.

Structured Field Trip
Many teachers take their students on field trips. Often these trips take place as a culminating event that rewards students for their work in the classroom and provides an opportunity for students to experience science phenomena related to their studies. However, all too often these trips are disconnected from classroom learning. We provided our 1stgrade teachers with a field trip structured to help them see that a field trip can actually be a part of the explore and explain section of a learning sequence, not just an extension.

Our teachers had the opportunity to visit the Ruben H. Fleet Science Center in San Diego. Prior to this visit, as the “teachers” we took the time to visit the museum. During this planning we found that while multiple exhibits were obviously linked to the ideas of sound and light waves, certain exhibits lent themselves to the first grade context better than others. We made deliberate choices about where and what we wanted the participants to think about at while visiting. Through this planning, we designed a field-trip guide that facilitated a more meaningful use of their time than free exploration.

While teachers explored the museum, they were given a field trip guide with guiding questions that prompted them to investigate how specific museum exhibits showcased sound or light waves. In addition to these written directions, we instructors positioned ourselves at specific exhibits and provided additional challenges to teachers. This allowed us to push our learners’ thinking, help them to connect to classroom learning, and provide individualized and focused instruction during the field trip.

Additionally, pairs of teachers were assigned specific museum exhibits and expected to create a model to help them explain how the exhibit worked for the rest of us when we returned to class. This meant that teachers had to apply the learning they had been doing all week in class while they “played” in the museum.

When we came back to class, our teachers were excited to share their models of the sound and light exhibits. They were ready to show their thinking and use modeling to explain how sound and light work. Even more important, by getting the chance to see sound and light in a world outside of the classroom, our teachers were ready to ask each other questions and were confident in trying to explain themselves – we became more focused on learning and less on the “right” answer. This is the best of what we want to do in science classrooms with students, urging our students to stretch themselves and come up with new ideas based on the understanding they already have of the natural world.

Engineering Design Cycle
We decided to use the 1st grade Performance Expectation 1-PS4-4: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance, as a culminating activity for our institute. While we don’t usually teach explicitly to the performance expectations, this P.E. allowed teachers to demonstrate their new science understandings developed during the institute and served as a great opportunity for teachers to applying their new science understandings while experiencing the engineering design process.

Figure 1

Figure 1

We defined the problem telling teachers they need to communicate over a long distance and need to design and build a device to make it happen. We supplied a great many different materials, including paper towel tubes, white paper, water bottles, plastic cups, string, yarn, fishing line, tape, boxes, flashlights, colored paper, and assorted art supplies. However we were concerned that all of our teachers would decide to build the standard cup and string device that many teachers could’ve built before the institute and that would fail to achieve the full potential of this engineering activity. So, prior to setting teachers loose on their engineering task, we helped conquer the desire to go to the most straightforward design by introducing our teachers to NGSS Appendix I: Engineering Design. (The engineering design cycles clarify what it means for students to engage in engineering at each grade band. Each cycle describes an iterative, three-step cycle that requires students to Define the problem, Develop Solutions, and then evaluate and revise solutions in order to Optimize their effectiveness. See Figure 1.)

With the focus now on solving a problem instead of just building a device, and with teachers wanting to show all they had learned about sound and light during the week, the designs were varied, interesting, and far more creative than cups and strings. After the first design and building period we asked each group to test their devices. There were varying levels of greatness to each of these, but everyone felt validated for their effort. Each was a solution to the problem of long-distance communication and a showcase of the teachers’ learning from the week. The opportunity to then update their devices based on the positives and negatives of both their testing and the other devices which had been built, led to even stronger final projects. Teachers culminated use of the device by playing “the telephone game” around a gymnasium without actually talking to one another.

Throughout our first summer institute, our 1st grade early implementers experienced NGSS-based science lessons and learned much about science pedagogy and physical science content. We hope that they were able to translate much of this to their classroom practice and that they are as excited as we are for year two with Earth and Space Science and more great science pedagogy and NGSS explorations!

Hershberger, K. &  Zembal-Saul, C. (2015). KLEWS to explanation-building in science. Science and Children, 52(6), 66-71.
Figure 1: Appendix I: Engineering Design in the NGSS

Crystal Howe is a TK-12 Science/Math Resource Teacher in the San Diego Unified School District, and can be contacted at

Nicole Hawke is a  1st Grade Teacher for the Coachella Valley Unified School District, and her e-mail is

William Straits is a  Professor of Science Education at the California State University Long Beach. His e-mail address is

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

One Response

  1. […]… […]

Leave a Reply


California Science Assessment Update

Posted: Wednesday, October 12th, 2016

by Jessica Sawko

In June 2016 California submitted a waiver application to discontinue using the old CST (based on 1998 standards) and conduct two years of pilot and field tests (in spring 2017 and 2018, respectively) of the new science assessment designed to support our state’s current science standards (California Next Generation Science Standards (CA-NGSS) adopted in 2013). The waiver was requested because no student scores will be provided as a part of the pilot and field tests. The CDE received a response from the U.S. Department of Education (ED) on September 30, 2016, which provides the CDE the opportunity to resubmit a revised waiver request within 60 days. The CDE will be revising the waiver request and resubmitting as ED suggested.

At its October 2016 North/South Assessment meetings CDE confirmed that there will be no administration of the old CST in the spring of 2017. (An archive of the meeting is available at Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Some ways to celebrate the 100th anniversary of the National Park Service in your classroom

Posted: Thursday, September 22nd, 2016

by Carol Peterson

1) To celebrate the 100th anniversary of the National Park Service, Google has put together a collection of virtual tours combining 360-degree video, panoramic photos and expert narration. It’s called “The Hidden Worlds of the National Parks” and is accessible right from the browser. You can choose from one of five different locales, including the Kenai Fjords in Alaska and Bryce Canyon in Utah, and get a guided “tour” from a local park ranger. Each one has a few virtual vistas to explore, with documentary-style voiceovers and extra media hidden behind clickable thumbnails. Ideas are included for use in classrooms. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2016 Award Recipients – Join CSTA in Honoring Their Accomplishments

Posted: Thursday, September 22nd, 2016

CSTA is pleased to announce the winners of the 2016 CSTA Awards for Distinguished Contributions, Margaret Nicholson Distinguished Service Award, 2014 and 2015 PAEMST-Science recipients from California, and the 2016 California PAEMST Finalists. The following individuals and organizations will be honored during the 2016 California Science Education Conference  on October 21- 23 in Palm Springs. This year’s group of awardees are truly outstanding. Please join us in congratulating them!

Margaret Nicholson Distinguished Service Award

John Keller

John Keller

The Margaret Nicholson Distinguished Service Award honors an individual who has made a significant contribution to science education in the state and who, through years of leadership and service, has truly made a positive impact on the quality of science teaching. This year’s recipient is John Keller, Ph.D. Dr. Keller is Associate Professor, Cal Poly San Luis Obispo and Co-Director, Center for Engineering, Science, and Mathematics Education, Cal Poly San Luis Obispo. In her letter of recommendation, SDSU science education faculty and former CSTA board member Donna Ross wrote: “He brings people together who share the desire to make a difference in the development and implementation of programs for science teaching. Examples of these projects include the Math and Science Teaching Initiative (MSTI), Noyce Scholars Program, Western Regional Noyce Initiative, and the Science Teacher and Researcher (STAR) program.” Through his work, he has had a dramatic impact on science teacher education, both preservice and in-service, in California, the region, and the country. He developed and implemented the STEM Teacher and Researcher Program which aims to produce excellent K-12 STEM teachers by providing aspiring teachers with opportunities to do authentic research while helping them translate their research experience into classroom practice. SFSU faculty member Larry Horvath said it best in his letter:“John Keller exemplifies the best aspects of a scientist, science educator, and mentor. His contributions to science education in the state of California are varied, significant, and I am sure will continue well into the future.” Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

NGSS: Making Your Life Easier

Posted: Tuesday, September 20th, 2016

by Peter A’hearn

Wait… What?

NGSS is a big shift. Teachers need to learn new content, figure out how this whole engineering thing relates to science, and develop new unit and lesson plans. How could NGSS possibly make life easier?

The idea that NGSS could make our lives easier came to me during the California State NGSS Rollout #1 Classroom Example lesson on chromatography. I have since done this lesson with high school chemistry students and it made me think back to having my own students do chromatography. I spent lots of time preparing to make sure the experiment went well and achieved the “correct” result. I pre-prepared the solutions and organized and prepped the materials. I re-wrote and re-wrote again the procedure so there was no way a kid could get it wrong. I spent 20 minutes before the lab modeling all of the steps in class, so there was no way to do it wrong. Except that it turns out there were many. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Celestial Highlights, September 2016

Posted: Tuesday, September 20th, 2016

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graph of evening planet setting times by Dr. Jeffrey L. Hunt 

Our evening twilight chart for September, depicting the sky about 40 minutes after sunset from SoCal, shows brilliant Venus remaining low, creeping from W to WSW and gaining a little altitude as the month progresses. Its close encounter within 2.5° N of Spica on Sept. 18 is best seen with binoculars to catch the star low in bright twilight. The brightest stars in the evening sky are golden Arcturus descending in the west, and blue-white Vega passing just north of overhead. Look for Altair and Deneb completing the Summer Triangle with Vega. The triangle of Mars-Saturn-Antares expands as Mars seems to hold nearly stationary in SSW as the month progresses, while Saturn and Antares slink off to the SW. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.