March/April 2017 – Vol. 29 No. 6

Practical Tools to Begin Implementing the NGSS in a First Grade Classroom

Posted: Friday, May 13th, 2016

by Crystal Howe, Nicole Hawke, and William Straits:

Across the state, during the summer of 2016, hundreds of teachers of NGSS “Early Implementers” schools participated in professional development institutes designed to help teachers better understand NGSS and science pedagogy. During a week-long summer institute, we worked with 1st grade teachers to explore sound and light waves, while highlighting practical tools to help implement NGSS in classrooms. These tools included a KLEWS chart (Hershberger & Zembal-Saul, 2015) to focus science learning, a field trip structured to create opportunities for students to share their science thinking, and the Engineering Design Cycle from Appendix I of NGSS.

KLEWS Chart
KLEWS is a graphic organizer that documents five steps in students learning: what students Know initially, what students Learn during investigations and what Evidence supports that learning, what students still Wonder after an investigation, and which Scientific principles/vocabulary explain the phenomena investigated. The KLEWS chart is a great way to take the well-known idea of KWL and expand it to show the importance of students’ evidence and the scientific principles students interact with.  While the KLEW chart has been around since 2006, it was recently updated to include the letter S.  While this addition may seem minimal, it is really at the heart of purpose behind the using the KLEWS chart, having students create scientific claims using the Claims, Evidence, and Reasoning Framework.

NascoAd

-Advertisement-

Our KLEWS chart focused on the question: What is sound? Through multiple Explore/Explain cycles the teachers were able to build learning, evidence, wonderings, and scientific principles from basic ideas they collected during investigations, such as vibrations cause sound, to the more difficult ones such as how sound waves move through different types of mediums. Even more useful, our teachers were able to use the Learning, Evidence, and Scientific principles of the KLEWS chart to construct strong scientific explanations at the end of the learning series, getting a hands-on experience of what it may look like for their first grade students.

We found the KLEWS chart to be a great scaffold to help elementary teachers in particular build in natural places throughout the investigation sequences, to encourage students to begin to build explanations. The hope at the elementary level is that we begin to repeatedly provide students with opportunities to document their learning as it progresses, taking away the fear of not knowing the “right” answer, and instead thinking of the evidence they have to support their learning.

Structured Field Trip
Many teachers take their students on field trips. Often these trips take place as a culminating event that rewards students for their work in the classroom and provides an opportunity for students to experience science phenomena related to their studies. However, all too often these trips are disconnected from classroom learning. We provided our 1stgrade teachers with a field trip structured to help them see that a field trip can actually be a part of the explore and explain section of a learning sequence, not just an extension.

Our teachers had the opportunity to visit the Ruben H. Fleet Science Center in San Diego. Prior to this visit, as the “teachers” we took the time to visit the museum. During this planning we found that while multiple exhibits were obviously linked to the ideas of sound and light waves, certain exhibits lent themselves to the first grade context better than others. We made deliberate choices about where and what we wanted the participants to think about at while visiting. Through this planning, we designed a field-trip guide that facilitated a more meaningful use of their time than free exploration.

While teachers explored the museum, they were given a field trip guide with guiding questions that prompted them to investigate how specific museum exhibits showcased sound or light waves. In addition to these written directions, we instructors positioned ourselves at specific exhibits and provided additional challenges to teachers. This allowed us to push our learners’ thinking, help them to connect to classroom learning, and provide individualized and focused instruction during the field trip.

Additionally, pairs of teachers were assigned specific museum exhibits and expected to create a model to help them explain how the exhibit worked for the rest of us when we returned to class. This meant that teachers had to apply the learning they had been doing all week in class while they “played” in the museum.

When we came back to class, our teachers were excited to share their models of the sound and light exhibits. They were ready to show their thinking and use modeling to explain how sound and light work. Even more important, by getting the chance to see sound and light in a world outside of the classroom, our teachers were ready to ask each other questions and were confident in trying to explain themselves – we became more focused on learning and less on the “right” answer. This is the best of what we want to do in science classrooms with students, urging our students to stretch themselves and come up with new ideas based on the understanding they already have of the natural world.

Engineering Design Cycle
We decided to use the 1st grade Performance Expectation 1-PS4-4: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance, as a culminating activity for our institute. While we don’t usually teach explicitly to the performance expectations, this P.E. allowed teachers to demonstrate their new science understandings developed during the institute and served as a great opportunity for teachers to applying their new science understandings while experiencing the engineering design process.

Figure 1

Figure 1

We defined the problem telling teachers they need to communicate over a long distance and need to design and build a device to make it happen. We supplied a great many different materials, including paper towel tubes, white paper, water bottles, plastic cups, string, yarn, fishing line, tape, boxes, flashlights, colored paper, and assorted art supplies. However we were concerned that all of our teachers would decide to build the standard cup and string device that many teachers could’ve built before the institute and that would fail to achieve the full potential of this engineering activity. So, prior to setting teachers loose on their engineering task, we helped conquer the desire to go to the most straightforward design by introducing our teachers to NGSS Appendix I: Engineering Design. (The engineering design cycles clarify what it means for students to engage in engineering at each grade band. Each cycle describes an iterative, three-step cycle that requires students to Define the problem, Develop Solutions, and then evaluate and revise solutions in order to Optimize their effectiveness. See Figure 1.)

With the focus now on solving a problem instead of just building a device, and with teachers wanting to show all they had learned about sound and light during the week, the designs were varied, interesting, and far more creative than cups and strings. After the first design and building period we asked each group to test their devices. There were varying levels of greatness to each of these, but everyone felt validated for their effort. Each was a solution to the problem of long-distance communication and a showcase of the teachers’ learning from the week. The opportunity to then update their devices based on the positives and negatives of both their testing and the other devices which had been built, led to even stronger final projects. Teachers culminated use of the device by playing “the telephone game” around a gymnasium without actually talking to one another.

Throughout our first summer institute, our 1st grade early implementers experienced NGSS-based science lessons and learned much about science pedagogy and physical science content. We hope that they were able to translate much of this to their classroom practice and that they are as excited as we are for year two with Earth and Space Science and more great science pedagogy and NGSS explorations!

Reference:
Hershberger, K. &  Zembal-Saul, C. (2015). KLEWS to explanation-building in science. Science and Children, 52(6), 66-71.
Figure 1: Appendix I: Engineering Design in the NGSS

Crystal Howe is a TK-12 Science/Math Resource Teacher in the San Diego Unified School District, and can be contacted at chowe@sandi.net

Nicole Hawke is a  1st Grade Teacher for the Coachella Valley Unified School District, and her e-mail is nicole.hawke@cvusd.us

William Straits is a  Professor of Science Education at the California State University Long Beach. His e-mail address is w.straits@csulb.edu

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

One Response

  1. […] http://www.classroomscience.org/practical-tools-to-begin-implementing-the-ngss-in-a-first-grade-clas… […]

Leave a Reply

LATEST POST

CSTA Endorses March for Science

Posted: Monday, March 27th, 2017

The California Science Teachers Association (CSTA) stands with our science and science education colleagues in endorsing the March For Science and its associated activities.

The decision by the CSTA Board of Directors to support the March for Science was based on the understanding that this is an opportunity to advocate for our mission of high quality science education for all and to advance the idea that science has application to everyday life, is a vehicle for lifelong learning, and the scientific enterprise expands our knowledge of the world around us. The principles and goals of the March for Science parallel those of CSTA to assume a leadership role in solidarity with our colleagues in science and science education and create an understanding of the value of science in the greater community. CSTA believes that the integrity of the nature of science and that the work of scientists and science educators should be valued and supported. We encourage your participation to stand with us.

There are over 30 satellite marches planned for the April 22, 2017 March for Science in California (to find a march near you, click on “marches” in the upper right of the main page, select “satellite marches” and use the search feature). We encourage members who participate in the March for Science to share their involvement and promotion of science and science education. Feel free to promote CSTA on your signs and banners. For those on social media, you may share your involvement via Twitter, @cascience and our Facebook groups.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

California Science Curriculum Framework Now Available

Posted: Tuesday, March 14th, 2017

The pre-publication version of the new California Science Curriculum Framework is now available for download. This publication incorporates all the edits that were approved by the State Board of Education in November 2016 and was many months in the making. Our sincere thanks to the dozens of CSTA members were involved in its development. Our appreciation is also extended to the California Department of Education, the State Board of Education, the Instructional Quality Commission, and the Science Curriculum Framework and Evaluation Criteria Committee and their staff for their hard work and dedication to produce this document and for their commitment to the public input process. To the many writers and contributors to the Framework CSTA thanks you for your many hours of work to produce a world-class document.

For tips on how to approach this document see our article from December 2016: California Has Adopted a New Science Curriculum Framework – Now What …? If you would like to learn more about the Framework, consider participating in one of the Framework Launch events (a.k.a. Rollout #4) scheduled throughout 2017.

The final publication version (formatted for printing) will be available in July 2017. This document will not be available in printed format, only electronically.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for CSTA Awards Nominations

Posted: Monday, March 13th, 2017

The 2017 Award Season is now open! One of the benefits of being a CSTA member is your eligibility for awards as well as your eligibility to nominate someone for an award. CSTA offers several awards and members may nominate individuals and organizations for the Future Science Teacher Award, the prestigious Margaret Nicholson Distinguished Service Award, and the CSTA Distinguished Contributions Award (organizational award). May 9, 2017 is the deadline for nominations for these awards. CSTA believes that the importance of science education cannot be overstated. Given the essential presence of the sciences in understanding the past and planning for the future, science education remains, and will increasingly be one of the most important disciplines in education. CSTA is committed to recognizing and encouraging excellence in science teaching through the presentation of awards to science educators and organizations who have made outstanding contributions in science education in the state and who are poised to continue the momentum of providing high quality, relevant science education into the future. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for Volunteers – CSTA Committees

Posted: Monday, March 13th, 2017

Volunteer

CSTA is now accepting applications from regular, preservice, and retired members to serve on our volunteer committees! CSTA’s all-volunteer board of directors invites you to consider maximizing your member experience by volunteering for CSTA. CSTA committee service offers you the opportunity to share your expertise, learn a new skill, or do something you love to do but never have the opportunity to do in your regular day. CSTA committee volunteers do some pretty amazing things: Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

A Friend in CA Science Education Now at CSTA Region 1 Science Center

Posted: Monday, March 13th, 2017

by Marian Murphy-Shaw

If you attended an NGSS Rollout phase 1-3 or CDE workshops at CSTA’s annual conference you may recall hearing from Chris Breazeale when he was working with the CDE. Chris has relocated professionally, with his passion for science education, and is now the Executive Director at the Explorit Science Center, a hands-on exploration museum featuring interactive STEM exhibits located at the beautiful Mace Ranch, 3141 5th St. in Davis, CA. Visitors can “think it, try it, and explorit” with a variety of displays that allow visitors to “do science.” To preview the museum, or schedule a classroom visit, see www.explorit.org. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.