January/February 2017 – Vol. 29 No. 4

Professional Development in 4-H: A Case for Reform

Posted: Tuesday, October 7th, 2014

by Martin Smith, Lynn Schmitt-McQuitty, Andrea Ambrose, and Steven Worker

There is a recognized need to improve the levels of scientific literacy among K-12 youth in the United States (Fleischman, Hopstock, Pelczar, & Shelley 2010; National Center for Education Statistics 2011). To accomplish this will require effective classroom-based science instruction and high quality science programs for youth in out-of-school time settings (Bell, Lewenstein, Shouse, & Feder 2009). Specifically, out-of-school time programs can help advance youth scientific literacy, ignite youths’ interest in science, and reinforce classroom learning by expanding curriculum offerings and complementing formal science instruction (Kahler and Valentine 2011; Mørch and du Bois-Reymond 2006).

Two of the factors that contribute to the low levels of youth scientific literacy in the U.S. are the use of didactic teaching strategies (Jorgenson & Vanosdall, 2002) and ineffective approaches to professional development of science educators (Loucks-Horsley et al., 1998; Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). Didactic teaching strategies – lectures and presentations – emphasize the direct delivery of information and memorization of known facts (Jorgenson and Vanosdall 2002). These methods do not provide learners with an in-depth understanding of science content and do little to contribute to their abilities to use scientific thinking (Cole et al., 2002; Minner, Levy, & Century, 2010). Conversely, constructivist-based teaching strategies like inquiry are learner-centered, foster knowledge and skills development, and hold promise for improving youth scientific literacy (Beerer & Bodzin, 2004; Minner, Levy, & Century, 2010).

Most professional development opportunities in science involve a highly skilled professional demonstrating knowledge and skills to less experienced individuals who are in the role of being passive recipients of information. Described by Lambert et al. (2002) as the “traditional approach” to professional development, this strategy perpetuates the use of didactic teaching methods and is viewed broadly as being ineffective (e.g., Garet et al., 2001; Loucks-Horsley et al. 2003; Penuel et al. 2007). Furthermore, because science educators teach most commonly using methods by which they were taught (Loucks-Horsley et al., 1998), to modify their practice “they must encounter multiple experiences with [effective pedagogical strategies] as learners” in order to use them effectively (Dantonio & Beisenherz, 2001, p. 14). Therefore, to become proficient at using effective pedagogical strategies to teach science, science educators require access to and participation in professional development opportunities that model constructivist-based, learner-centered methods (Loucks-Horsley et al., 2003; Smith & Schmitt-McQuitty, 2013).

The California 4-H Youth Development Program is part of a national community-based youth development organization. With a 100-year legacy of science programming, California 4-H offers a wide range of learning opportunities in out-of-school time settings through county-based offices throughout the state . Pedagogically, 4-H science programs and associated curriculum materials utilize experiential learning and inquiry (Worker & Smith, in press). To implement programs, the 4-H Youth Development Program relies heavily on volunteers – adults and teens – as non-formal educators who facilitate educational activities with youth (Boyd, 2004; Stedman & Rudd, 2006). However, as is true with most educators in other community-based programs that offer science programming, the majority of 4-H volunteers lack sufficient professional development to be successful (Chi, Freeman, & Lee, 2008; Smith & Schmitt-McQuitty, 2013). Thus, with youth learner outcomes associated with scientific literacy in mind, California 4-H is giving careful consideration to the design and implementation of professional development opportunities for 4-H volunteers (Smith & Schmitt-McQuitty, 2013).

Historically, professional development opportunities in 4-H have utilized mainly “traditional” methods: one-time, in-person workshops or seminars of short duration (Kaslon, Lodl, & Greve, 2005). However, such episodic strategies do not produce significant change in educators’ practice (Garet et al., 2001; Loucks-Horsley et al., 2003; Guskey & Yoon, 2009). In contrast, “reform-based” professional development strategies that take place over an extended period of time, utilize active learning strategies that provide educators direct experience using constructivist-based methods, occur within authentic contexts, and emphasize subject matter and pedagogical knowledge have been shown to be effective (Garet et al., 2001; Guskey, 2003; Guskey & Yoon, 2009; Loucks-Horsley et al., 2003; Penuel, Fishman, Yamaguchi, & Gallagher, 2007; Supovitz & Turner, 2000).

To this end, the California 4-H Science, Engineering, and Technology (SET) Leadership Team, academic and program staff that provide statewide leadership in science education, has advocated for wider use of “reform-based” professional development strategies for 4-H volunteers. Specifically, the SET Leadership Team has promoted methods such as action research and lesson study that utilize communities of practice (CoPs) (Smith & Schmitt-McQuitty, 2013). Communities of practice are organized networks of peers working toward shared learning goals that arise through authentic practice whereby participants co-construct knowledge through social interactions (Buysse et al., 2003; Lave & Wenger, 1991). A recent pilot study using lesson study with 4-H volunteers who implemented a science curriculum with 4-H youth in club settings revealed that the model has excellent potential for broader use (Smith, 2013). Further investigation of lesson study and other professional development models utilizing CoPs within the context of 4-H science programming has been recommended (Smith & Schmitt-McQuitty, 2013).

The California 4-H Youth Development Program endeavors to help advance the levels of scientific literacy among K-12 youth in the state. To accomplish this, the 4-H Program is seeking to improve the professional development of 4-H volunteer educators in order to increase their capacity to utilize effective science pedagogy in their work with youth audiences. Specifically, California 4-H strives to utilize “reform-based” professional development strategies as a means to provide science-learning opportunities for their volunteers that model best practices, provide direct experience, and occur in authentic settings.

For more information about 4-H and to access 4-H SET curriculum materials, please click here.

Steven Worker, Martin Smith, Andrea Ambrose, Lynn Schmitt-McQuitty are with the California State 4-H Office at the University of California’s Division of Agricultural and Natural Resources. Steven, Martin, and Lynn are members of CSTA.

References

Bell, P., Lewenstein, B., Shouse, A., & Feder, M. (eds.). (2009). Learning Science in Informal Environments: People, Places, and Pursuits. Washington, DC: National Academies Press.

Boyd, B. L. (2004). Extension agents as administrators of volunteers: Competencies needed for the future. Journal of Extension, 42(2).

Buysse, V., Sparkman, K., Wesley, P. W. (2003). Communities of practice in educational research: Connecting what we know with what we do. Exceptional Children, 69(3), 263–77.

Chi, B.S., Freeman, J., & Lee S. (2008). Science in afterschool market research study. A study commission by the S.D. Bechtel, Jr. Foundation. Berkeley, CA: Lawrence Hall of Science, University of California, Berkeley.

Cole, D.J., Mahaffey, G., Ramey, L., et al. (2002). Preparing quality science educators: A successful tripartite partnership. Paper presented at Ann Meeting of Association of Teacher Educators, Feb 2, 2002. Denver, CO. ERIC Document Reproduction Service No. ED461658.

Dantonio, M., & Beisenherz, P. C. (2001). Learning to Question, Questioning to Learn. Needham Heights, MA: Allyn & Bacon.

Fleischman, H.L., Hopstock, P.J., Pelczar, M.P., and Shelley, B.E. (2010). Highlights from PISA 2009: Performance of U.S. 15-Year-Old Students in Reading, Mathematics, and Science Literacy in an International Context (NCES 2011-004). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Garet, M. S, Porter, A. C., Desimone L, et al. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research Journal, 38(4), 915-945.

Guskey, T. R. (2003). Professional development that works: What makes professional development effective? Phi Delta Kappan, 84(10), 748–50.

Guskey, T. R., & Yoon, K. S. (2009). What works in professional development? Phi Delta Kappan 90(7), 495–500.

Jorgenson, O., & Vanosdall, R. (2002). The death of science? What we risk in our rush toward standardized testing and the three R’s. Phi Delta Kappan 83(8), 601-605.

Kahler, J., & Valentine, N. (2011). Stemming the gap. Education Digest 76(6), 54-55.

Kaslon, L., Lodl, K., & Greve, V. (2005). Online leader training for 4-H volunteers: A case study of action research. Journal of Extension, 43(2).

Lambert, L., Walker, D., Zimmerman, D. P., et al. (2002). The Constructivist Leader (2nd ed.). New York: Teachers College Press.

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge, UK: Cambridge University Press.

Loucks-Horsley, S., Hewson, P., Love, N., & Stiles K. (1998). Designing Professional Development for Teachers of Science and Mathematics. Thousand Oaks, CA: Corwin Press.

Loucks-Horsley, S., Love, N., Stiles, K., Mundry, S., & Hewson, P. (2003). Designing Professional Development for Teachers of Science and Mathematics (2nd ed.). Thousand Oaks, CA: Corwin Press.

Minner, D. D, Levy, A. J, & Century, J. (2010). Inquiry-based science instruction – What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496.

Mørch, S., & du Bois-Reymond, M. (2006). Young Europeans in a changing world. New Directions for Child and Adolescent Development, 113, 23-35.

National Center for Education Statistics. (2011). The Nation’s Report Card: Science 2009. NCES 2011-451. Institute of Education Sciences, US Department of Education.Washington, D.C. Retrieved from: http://nces.ed.gov/nationsreportcard/pdf/main2009/2011451.pdf

Penuel, W. R., Fishman, B. J., Yamaguchi, R., & Gallagher, L. P. (2007). What makes professional development effective? Strategies that foster curriculum implementation. American Educational Research Journal, 44(4), 921-958.

Smith, M. H. (2013). Investigating Lesson Study as a Professional Development Model for 4-H Volunteers. California Agriculture, 67(1), 54-61.

Smith, M. H., & Schmitt-McQuitty, L. (2013). More effective professional development can help 4-H volunteers address need for youth scientific literacy. California Agriculture, 67(1), 47-53.

Stedman, N. L. P., & Rudd, R. (2006). Leadership styles and volunteer administration competence: Perceptions of 4-H county faculty in the United States. Journal of Extension, 44(1).

Supovitz, J. A., Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching, 37(9), 963-980.

Worker, S. M., & Smith, M. H. (In press). Promising practices for science education in out-of-school time: Lessons learned from California 4-H in curriculum and professional development. Afterschool Matters.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Leave a Reply

LATEST POST

STEM Conference Hosted by CMSESMC

Posted: Saturday, January 14th, 2017

The Council of Math/Science Educators of San Mateo County will be hosting the 41st annual STEM Conference this February 4, 2017 at the San Mateo County Office of Education. This STEM Conference is the place to get lots of new lessons and ideas to use in your classroom. There will be over twenty-five workshops and a variety of exhibitors that provide participants with a wide range of practical and realistic ideas and resources to use in their science, technology, engineering and math (STEM) programs from Pre-K to grade 12. With California’s adoption of the Common Core State Standards and the Next Generation Science Standards, we are dedicated to ensuring that we prepare our teachers to take on these educational policies.

Teachers, administrators and parents are invited to explore the many exciting aspects of STEM education and learn about and discuss the latest news, information and issues. This is also an opportunity to network with colleagues who can assist you in building your programs and meet new friends that share your interests and love of teaching.

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Opportunities to Support NGSS Implementation with CTC

Posted: Friday, January 13th, 2017

What follows are several opportunities for science teachers to work with the Commission on Teacher Credentialing (CTC) on various projects that have direct or indirect implications for the implementation of NGSS in California. Please consider applying to one or more of the following opportunities.

CSET Field Testing Opportunities

Field testing opportunities for future CSET Multiple Subjects and Science tests are available beginning Dec. 5, 2016. Participants will have the choice between a $50 Barnes and Noble eGift Card or a $75 test fee voucher that may be applied to future test registration fees. For more information, including how to register to participate, please visit: http://www.pearsonvue.com/espilot/cset.asp. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Submit Your NGSS Lessons and Units Today!

Posted: Friday, January 13th, 2017

Achieve has launched and is facilitating an EQuIP Peer Review Panel for Science–a group of expert reviewers who will evaluate the quality and alignment of lessons and units to the standards–in an effort to identify and shine a spotlight on emerging high-quality lesson and unit plans designed for the NGSS.

If you or your state, district, school, or organization has designed NGSS-aligned instructional materials, please consider submitting these in order to help provide educators across the country with various models and templates of high-quality lesson and unit plans. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Opportunity for High School Students – Los Angeles County

Posted: Friday, January 13th, 2017

An upcoming Perry Outreach Program on Saturday, April 22, 2017 at the Orthopaedic Institute for Children in Los Angeles, CA. The Perry Outreach Program is a free, one-day, hands-on experience for high school and college-aged women who are interested in pursuing careers in medicine and engineering. Students will hear from women leaders in these fields and try it for themselves by performing mock orthopaedic surgeries and biomechanics experiments. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Science Education Policy Update

Posted: Friday, January 13th, 2017

by Jessica Sawko

January 2017 has proven to be a very busy month for science education policy and CA NGSS implementation activities. CSTA has been and will be there every step of the way, seeking and enacting all options to support high-quality science education and the successful implementation of CA NGSS.

California Department of Education/U.S. Department of Education Science Double-Testing Waiver Hearing

The year started with California Department of Education’s (CDE) hearing with the U.S. Department of Education conducted via WebEx on January 6, 2017. This hearing was the final step in California’s efforts to secure a waiver from the federal government in order to discontinue administration of the old CST and suspension of the reporting of student test scores on a science assessment for two years. As reported by EdSource, the U.S. Department of Education representative, Ann Whalen, a senior adviser to U.S. Secretary John King Jr., committed to making her final ruling “very shortly.” Deputy Superintendent Keric Ashley presented on behalf of CDE during the hearing and did an excellent job describing the broad-based support for this waiver in California, the rationale for the waiver, and California’s commitment to the successful implementation of a new high-quality science assessment. As previously reported, California is moving forward with its plans to administer a census pilot assessments this spring. The testing window is set to open on March 20, 2017. For more information visit New CA Science Test: What You Should Know.

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.