September/October 2017 – Vol. 30 No. 1

SciEd Side Bar: Let Them Figure It Out!

Posted: Wednesday, September 14th, 2016

Supplement to: Poland, Evans, and Grace (2016), Taking Risks with NGSS: A Growth Model for the Classroom, California Classroom Science, (29)1.

“Every kid starts out as a natural-born scientist, and then we beat it out of them. A few trickle through the system with their wonder and enthusiasm for science intact.”

– Carl Sagan

There is a vast body of research that supports the notion that for students to develop deep conceptual understanding, we must put students in the driver seat of thinking.

Allowing students to have the freedom to work through their thinking without being told they are wrong or the correct “answer” is critical in building their conceptual understanding as well as supporting metacognitive growth. There’s also an added benefit for the teacher: observing students in the process of sense-making provides a powerful opportunity to adequately gage their thinking to inform the next instructional decision. When a teacher realizes the students are “off target”, s/he subsequently provides more experiences that will challenge naïve ideas. Students that experience this tend to question their original ideas and gradually replace those with more scientifically accepted thinking. It is this method, often described as “constructivism”, that is most powerful in helping students overcome their initial preconceptions. Not only is this type of learning more long-term and sustainable, it has the added benefit of increasing student enthusiasm when students get to “work like scientists” and know their thinking is valued, even when flawed (Duschl, R. A., Schweingruber, H. A., & Shouse, A. W., 2007).

It is this kind of teaching and learning that supports a key shift called for by the NGSS:

K-12 Science Education should reflect the interconnected nature of science as it is practiced and experience in the real world (NGSS Lead States, 2013).

Although the NGSS may seem new, the underpinning ideas are not. Readers might be familiar with “A Private Universe”, where Harvard graduates struggle to explain what causes seasons (Schneps, M. H., Sadler, P. M., Woll, S., & Crouse, L. (1989). Many expressed their naïve conception that seasons are caused based on how close the Earth is to the sun. A conclusion from this pivotal study is that, like these Harvard graduates, the ideas we tend to retain are those we create for ourselves. Therefore, teachers must help students to develop their understanding by providing opportunities that move them from their preconceptions to more scientifically-aligned understanding. It is far more likely that students will retain their ideas constructed in this manner, rather than the ones we tell them.

In the “teaching day” described in this article, students were asked to engage in generating a model to show their understanding of what happened in their system. The practice of scientifically modeling gave students the space to mentally process their ideas. When the students noticed they didn’t have enough information to be successful in the task, this set the stage for challenging their thinking. Further, the teacher resisted the urge to correct student thinking knowing she would use their work to determine her next teaching steps. She carefully questions the students to gain insight into their ideas (a powerful form of formative assessment). The students, in response to the task and teacher questioning, came to their own realization that they were unsure of their ideas. On their own, the students decided they needed to know more. When the teacher walked away, the students independently pulled out their science notebooks to gather more information. This was a powerful moment where students were given the time and opportunity to truly work like a scientist and have experiences to shape their thinking.

Want to take a first step in changing your practice? Here are some of our favorite references that have helped us shift our practice in a way that provides students such opportunities:

For a short dive, try:

Colburn, A. (2007). The Prepared Practitioner: Constructivism and Conceptual Change, Part 1. The Science Teacher, 74 (7), 10.

Colburn, A. (2007). The Prepared Practitioner: Constructivism and Conceptual Change, Part 1I. The Science Teacher, 74 (8), 14.

For a deeper dive, try:

Coffey, Hammer, Levin, Grant “The Missing Disciplinary Substance of Formative Assessment” Journal of Research in Science Teaching Vol 48, No.10 PP.1109-1136 (2011)

Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, eds. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

Bransford, J., A. Brown, and R. Cocking, eds. (2000). How people learn: Brain, mind, experience, and school committee on developments in the science of learning. With additional materials from The Committee on Learning Research and Educational Practice, M. Suzanne Donovan, John D. Bransford, and James W. Pellegrino, editors. Commission on Behavioral and Social Sciences and Education of the National Research Council. Washington, D.C.: National Academy Press.

References:

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. (2013).

Appendix A – Conceptual Shifts in the Next Generation Science Standards Retrieved from: http://www.nextgenscience.org/sites/default/files/Appendix%20A%20-%204.11.13%20Conceptual%20Shifts%20in%20the%20Next%20Generation%20Science%20Standards.pdf

http://www.nextgenscience.org/sites/default/files/Appendix A – 4.11.13 Conceptual Shifts in the Next Generation Science Standards.pdf

Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, eds. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

Schneps, M. H., Sadler, P. M., Woll, S., & Crouse, L. (1989). A Private universe. S. Burlington, VT: Annenberg Media.

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.

News and Happenings in CSTA’s Region 1 – Fall 2017

Posted: Tuesday, August 29th, 2017

by Marian Murphy-Shaw

Cal

This month I was fortunate enough to hear about some new topics to share with our entire region. Some of you may access the online or newsletter options, others may attend events in person that are nearer to you. Long time CSTA member and environmental science educator Mike Roa is well known to North Bay Area teachers for his volunteer work sharing events and resources. In this month’s Region 1 updates I am happy to make a few of the options Mike offers available to our region. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.