March/April 2017 – Vol. 29 No. 6

STEM?

Posted: Sunday, July 1st, 2012

by Rick Pomeroy

What is STEM? Besides the Next Generation Science Standards (NGSS), STEM is the hot topic in science education circles. Representing an ethereal notion of teaching that integrates Science, Technology, Engineering and Math, STEM, as the next big idea, has taken on a life of its own. As science educators and science professionals, we live in an increasingly STEM-centric world. Political leaders and pundits alike tout STEM as the wave of the future, the elixir to return California to an age of prosperity, and the solution to what ails public education. STEM will engage and motivate students, increase the number of people entering post-secondary education with majors in science, technology, engineering, and math fields, and create a new reality in schools. Unfortunately, defining STEM education, identifying what STEM will look like in schools, and distinguishing it from current instructional practices are extremely difficult tasks.

Those of you who have been following the development of the new standards will recognize the similarity between the goals and dreams of STEM and the desired outcomes described in the Framework for K-12 Science Education, the document developed by the National Research Council and used to guide the development of the NGSS. Similar in concept, the Framework and ultimately, the NGSS provide a detailed view of what the educated member of society should know and be able to do, whereas the current conversations about STEM focus more on defining what a STEM classroom will look like, the kinds of things STEM-enabled students will be able to do, and the format of STEM instructional practices. Are these two mutually exclusive or are they two different ways of describing the same desired outcome?

Over the past three months, I have attended no less than four STEM summits, conferences, and meetings designed to fuel the flames of excitement about STEM. At these meetings, we have been shown videos of students designing and programming robots, we have seen how technology engages students, and we have heard that digital technology in the classroom will promote collaboration. There have even been whole meetings on how to prepare teachers to “teach STEM.” Each conference has included its share of descriptions about what is wrong with the current system, statistics about where California ranks nationally and internationally on assessments and per pupil spending, and attempts to develop definitions, lists of resources, and policy changes that need to be made to enact a STEM enabled curriculum. Each meeting has introduced industry partners who have a tool or technology that is “perfect” for enabling STEM education. We have used collaborative decision making software, blogged our conversations, created collaborative documents, and seen tablets and notebook computers that promise to be the tool of the future. Each of these has been a powerful demonstration of what can be. The videos of students in action have been inspirational and the collaborative research projects give me ideas for great things to do with my students.

Through all of these experiences, a definition of STEM that teachers can use as they plan future learning experiences for their students has been elusive. This may be changing. While attending the Superintendent of Public Instruction’s STEM Task Force meeting, a wide range of science education stakeholders were asked to define STEM education. Gleaned from the descriptors of those definitions, the “Wordle” below shows the relative frequency of terms associated with STEM education. The similarity of descriptors between the STEM Wordle and the Science and Engineering Practices included in the Framework cannot be overlooked. Are we talking about the same things? If NGSS is adopted in California, can we also say that we are moving towards a STEM-enabled curriculum? Furthermore, will students who study science, math, engineering, and technology as defined by the Common Core Standards, and the NGSS be competitive in the post-secondary environments of college and careers? At this time, it is difficult to answer this question.

Click image to enlarge:

Subsequent meetings have given more meaning to this random collection of words with key elements emerging. For many, STEM education is grounded in a real world context. It prepares future citizens and decision makers with the skills necessary to be successful in the 21st century. It is focused both on preparing more people to enter STEM fields through post-secondary colleges and universities, as well as equipping those who forgo higher education with the knowledge and skills necessary to contribute to society. From these components, I believe a final definition of STEM will emerge. From there, we can begin to address the resources, training, and policies that will be necessary to truly say that STEM has arrived in California classrooms. Equipped with the structure and content of the Framework and the NGSS, and a commitment to grounding science instruction in a real world context, we have a much better chance of enacting a new vision for STEM education. We should not approach this as an all or nothing reform of every classroom. The implementation will look different in different contexts. Some schools will become STEM centers, others will integrate the tools and strategies developed as STEM emerges, and still others will tweak what they have for something that they want. In the end, our goal should be an education for our students that prepares them for the future, not more knowledge about the status quo. We should be preparing students now with the knowledge, skills and tools to develop solutions for problems that don’t yet exist (paraphrased from Linda Darling-Hammond, The Flat World and Education, 2009).

Rick Pomeroy is science education lecturer/supervisor in the School of Education, University of California, Davis and is CSTA’s president.

Powered By DT Author Box

Written by Rick Pomeroy

Rick Pomeroy

Rick Pomeroy is science education lecturer/supervisor in the School of Education, University of California Davis.

Leave a Reply

LATEST POST

California Science Curriculum Framework Now Available

Posted: Tuesday, March 14th, 2017

The pre-publication version of the new California Science Curriculum Framework is now available for download. This publication incorporates all the edits that were approved by the State Board of Education in November 2016 and was many months in the making. Our sincere thanks to the dozens of CSTA members were involved in its development. Our appreciation is also extended to the California Department of Education, the State Board of Education, the Instructional Quality Commission, and the Science Curriculum Framework and Evaluation Criteria Committee and their staff for their hard work and dedication to produce this document and for their commitment to the public input process. To the many writers and contributors to the Framework CSTA thanks you for your many hours of work to produce a world-class document.

For tips on how to approach this document see our article from December 2016: California Has Adopted a New Science Curriculum Framework – Now What …? If you would like to learn more about the Framework, consider participating in one of the Framework Launch events (a.k.a. Rollout #4) scheduled throughout 2017.

The final publication version (formatted for printing) will be available in July 2017. This document will not be available in printed format, only electronically.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for CSTA Awards Nominations

Posted: Monday, March 13th, 2017

The 2017 Award Season is now open! One of the benefits of being a CSTA member is your eligibility for awards as well as your eligibility to nominate someone for an award. CSTA offers several awards and members may nominate individuals and organizations for the Future Science Teacher Award, the prestigious Margaret Nicholson Distinguished Service Award, and the CSTA Distinguished Contributions Award (organizational award). May 9, 2017 is the deadline for nominations for these awards. CSTA believes that the importance of science education cannot be overstated. Given the essential presence of the sciences in understanding the past and planning for the future, science education remains, and will increasingly be one of the most important disciplines in education. CSTA is committed to recognizing and encouraging excellence in science teaching through the presentation of awards to science educators and organizations who have made outstanding contributions in science education in the state and who are poised to continue the momentum of providing high quality, relevant science education into the future. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Call for Volunteers – CSTA Committees

Posted: Monday, March 13th, 2017

Volunteer

CSTA is now accepting applications from regular, preservice, and retired members to serve on our volunteer committees! CSTA’s all-volunteer board of directors invites you to consider maximizing your member experience by volunteering for CSTA. CSTA committee service offers you the opportunity to share your expertise, learn a new skill, or do something you love to do but never have the opportunity to do in your regular day. CSTA committee volunteers do some pretty amazing things: Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

A Friend in CA Science Education Now at CSTA Region 1 Science Center

Posted: Monday, March 13th, 2017

by Marian Murphy-Shaw

If you attended an NGSS Rollout phase 1-3 or CDE workshops at CSTA’s annual conference you may recall hearing from Chris Breazeale when he was working with the CDE. Chris has relocated professionally, with his passion for science education, and is now the Executive Director at the Explorit Science Center, a hands-on exploration museum featuring interactive STEM exhibits located at the beautiful Mace Ranch, 3141 5th St. in Davis, CA. Visitors can “think it, try it, and explorit” with a variety of displays that allow visitors to “do science.” To preview the museum, or schedule a classroom visit, see www.explorit.org. Learn More…

Written by Marian Murphy-Shaw

Marian Murphy-Shaw

Marian Murphy-Shaw is the student services director at Siskiyou County Office of Education and is CSTA’s Region 1 Director and chair of CSTA’s Policy Committee.

Learning to Teach in 3D

Posted: Monday, March 13th, 2017

by Joseph Calmer

Probably like you, NGSS has been at the forefront of many department meetings, lunch conversations, and solitary lesson planning sessions. Despite reading the original NRC Framework, the Ca Draft Frameworks, and many CSTA writings, I am still left with the question: “what does it actually mean for my classroom?”

I had an eye-opening experience that helped me with that question. It came out of a conversation that I had with a student teacher. It turns out that I’ve found the secret to learning how to teach with NGSS: I need to engage in dialogue about teaching with novice teachers. I’ve had the pleasure of teaching science in some capacity for 12 years. During that time pedagogy and student learning become sort of a “hidden curriculum.” It is difficult to plan a lesson for the hidden curriculum; the best way is to just have two or more professionals talk and see what emerges. I was surprised it took me so long to realize this epiphany. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.