September 2016 – Vol. 29 No. 1

Strategies for Assessing Student Understanding in the NGSS Classroom

Posted: Wednesday, April 1st, 2015

by Sara Dozier

Like me, you are probably excited about the opportunities that the Next Generation Science Standards offer students and teachers. For the first time in 17 years, our science standards are asking us to engage our students in science learning that is engaging, meaningful and just plain fun. In addition to our excitement, though, there is also some apprehension.

One concern teachers share is how accountability will work for the California NGSS. What will “the test” look like? The new NGSS-aligned California science assessment system is in the early design stages so we don’t yet know for certain. The State Implementation Plan for California NGSS indicates a pilot of the new NGSS-aligned monitoring assessment system in 2016-17, with the assessment system to be fully operational in 2018-19. Some teachers may consider waiting until we can see the new assessment system before they change their teaching and assessment practices. However, we have a gift of time to teach students how to express their science knowledge in all three dimensions of NGSS on assessments and use the rich information from these tasks to guide instruction. There is no time like the present to start making the shifts needed in the long run.

But what does three-dimensional assessment look like, anyway? And, how can teachers start shifting without burying themselves in the work of writing and grading these new assessments? The steps below describe one way to start transitioning during the awareness and transition phases. During implementation, we will need assessments that are fully aligned with the Performance Expectations. By starting now, we can start teaching our students and ourselves these skills in parallel with the work of transitioning our curriculum toward the NGSS. Build on your existing curriculum to start shifting now using the steps described below.

Go slowly and start with what you already have.  Three-dimensional learning means that you have a task that assesses the Disciplinary Core Ideas, Science and Engineering Practices and the Cross Cutting Concepts. To assess understanding, start by using the NGSS-aligned work students do as they are learning, rather than creating new, separate NGSS tasks for learning and tasks for assessment.

  • Example Lesson Embedded Assessment: the familiar Can Crusher activity
  • Traditional Demonstration: Boil 10 mL of water in an empty soda can. Using tongs, invert the can into cold water. The can crushes.
  • Modifications for NGSS: After teacher approval of experimental design, students investigate the effect of different variables on the phenomenon. (See NGSS Appendix D for a detailed lesson sequence that utilizes this experiment.)

Don’t try to fit all three dimensions into one question. Teachers are experienced writers of items (test questions, writing or discussion prompts, etc.) that assess the Disciplinary Core Ideas, and we should incorporate those items as we develop new tasks. Learning and assessment tasks should not be a single item, but contain multiple items that collectively measure all three dimensions.

Examine the Science and Engineering Practices. To assess the Science and Engineering Practices, choose the practice most aligned to your instructional task. For the Can Crusher example, we explore the Practice of Planning and Carrying Out Investigations. Refer to the NGSS Appendix F and find your grade band in the progression. Identify just one bullet point that you will focus on in the lesson.

A grade 6-8 example: “Evaluate the accuracy of various methods for collecting data.” To address this, you might start with a whole class discussion of how different groups measured the dependent variable or use an exit slip to see how they they understand the role of data collection in understanding the properties of different states of matter. You could add an analysis question to their lab write-up asking, ”How did you choose to collect data in your experiment? If you could revise your data collection plan to be more accurate, what would you change and how would it improve your accuracy?”

The important part is that you understand how they are evaluating accuracy in the context of this scientific understanding.

Frame student responses through the lens of the Crosscutting Concepts. Assessing the Crosscutting Concepts may seem more challenging. I suggest a similar approach, this time referring to NGSS Appendix G, identifying a bullet from “Progression of the Crosscutting Concepts,” and eliciting your students’ thinking through that lens.

For example, the Crosscutting Concept of Cause and Effect provides this description: “Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation.” In the Can Crusher example students might identify the observed effect and describe their understanding of the cause. This could be followed by a discussion of the evidence supporting the claim that the condensation of water vapor actually caused the collapse, rather than just appearing to happen at the same time.

This may be the first time your students have been asked to distinguish between correlation and causation in science.  This is a great opportunity to use classroom discourse to build an understanding of the distinction while at the same time you listen to their conversations to assess their understanding.

Use your questions to get inside their heads. All tasks should give you a clear window into how your students use their science knowledge, not just whether they wrote the “right” answer. Arriving at a normative, developmentally appropriate understanding of science is coupled with the process students use to gain that understanding. Writing prompts and questions that elicit student explanations of their thought process is in sharp contrast to multiple-choice items. These items are challenging for teachers to design, made doubly so by students’ unfamiliarity with answering them. Teachers and students need practice to become comfortable with this type of learning and assessment. Start with items you currently use, and write down some possible responses or look at actual student work from past experiences. With these anticipated responses in mind, determine whether this particular item provides deep insight to the students’ thinking or just the opportunity to demonstrate rote learning (e.g. define vocabulary, run an algorithm). Modify these items to encourage students to share their thinking.

Don’t worry about how to grade these new items. Grading is an important part of our work, as it provides clear feedback to students, parents, and outside entities about the student’s achievement. While we are exploring this new type of assessment, it will be difficult to assign proficiency-based grades. With practice you will be much more comfortable identifying three-dimensional learning goals and assigning grades based on their progress toward the goal. When you feel ready to change your grading structure, see Formative Assessment & Standards‑Based Grading by Marzano for one creative approach.

Don’t let perfect be the enemy of good. As we move toward the 2018-19 operational California NGSS-aligned assessment, we need to build our students’ capacity to demonstrate their ability to use their science knowledge as they engage in the Science and Engineering Practices as the Crosscutting Concepts. It may be a bit bumpy at first, but remember teachers and students alike are all learning this new way of teaching and learning. As teachers, we need to find ways to elicit responses that allow us to see inside our students’ thinking. As you shift your classroom culture and teaching practices toward the NGSS, keep these ideas in mind to prepare to enter the implementation phase of California NGSS.

Other NGSS Assessment Resources

Concord Consortium NGSS Assessment Project- Sample Assessment Tasks

California NGSS Implementation Plan

Developing Assessments for the Next Generation Science Standards, NRC Committee Report, June 2014

Invitational Research Symposium on Science Assessment, September 24–25, 2013

Sara Dozier is Science Coordinator, Integrated Middle School Science Partnership at the Alameda County Office of Education.  She was invited to write for CCS by Lisa Hegdahl.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

Leave a Reply


California Science Assessment Update

Posted: Wednesday, October 12th, 2016

by Jessica Sawko

In June 2016 California submitted a waiver application to discontinue using the old CST (based on 1998 standards) and conduct two years of pilot and field tests (in spring 2017 and 2018, respectively) of the new science assessment designed to support our state’s current science standards (California Next Generation Science Standards (CA-NGSS) adopted in 2013). The waiver was requested because no student scores will be provided as a part of the pilot and field tests. The CDE received a response from the U.S. Department of Education (ED) on September 30, 2016, which provides the CDE the opportunity to resubmit a revised waiver request within 60 days. The CDE will be revising the waiver request and resubmitting as ED suggested.

At its October 2016 North/South Assessment meetings CDE confirmed that there will be no administration of the old CST in the spring of 2017. (An archive of the meeting is available at Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Some ways to celebrate the 100th anniversary of the National Park Service in your classroom

Posted: Thursday, September 22nd, 2016

by Carol Peterson

1) To celebrate the 100th anniversary of the National Park Service, Google has put together a collection of virtual tours combining 360-degree video, panoramic photos and expert narration. It’s called “The Hidden Worlds of the National Parks” and is accessible right from the browser. You can choose from one of five different locales, including the Kenai Fjords in Alaska and Bryce Canyon in Utah, and get a guided “tour” from a local park ranger. Each one has a few virtual vistas to explore, with documentary-style voiceovers and extra media hidden behind clickable thumbnails. Ideas are included for use in classrooms. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2016 Award Recipients – Join CSTA in Honoring Their Accomplishments

Posted: Thursday, September 22nd, 2016

CSTA is pleased to announce the winners of the 2016 CSTA Awards for Distinguished Contributions, Margaret Nicholson Distinguished Service Award, 2014 and 2015 PAEMST-Science recipients from California, and the 2016 California PAEMST Finalists. The following individuals and organizations will be honored during the 2016 California Science Education Conference  on October 21- 23 in Palm Springs. This year’s group of awardees are truly outstanding. Please join us in congratulating them!

Margaret Nicholson Distinguished Service Award

John Keller

John Keller

The Margaret Nicholson Distinguished Service Award honors an individual who has made a significant contribution to science education in the state and who, through years of leadership and service, has truly made a positive impact on the quality of science teaching. This year’s recipient is John Keller, Ph.D. Dr. Keller is Associate Professor, Cal Poly San Luis Obispo and Co-Director, Center for Engineering, Science, and Mathematics Education, Cal Poly San Luis Obispo. In her letter of recommendation, SDSU science education faculty and former CSTA board member Donna Ross wrote: “He brings people together who share the desire to make a difference in the development and implementation of programs for science teaching. Examples of these projects include the Math and Science Teaching Initiative (MSTI), Noyce Scholars Program, Western Regional Noyce Initiative, and the Science Teacher and Researcher (STAR) program.” Through his work, he has had a dramatic impact on science teacher education, both preservice and in-service, in California, the region, and the country. He developed and implemented the STEM Teacher and Researcher Program which aims to produce excellent K-12 STEM teachers by providing aspiring teachers with opportunities to do authentic research while helping them translate their research experience into classroom practice. SFSU faculty member Larry Horvath said it best in his letter:“John Keller exemplifies the best aspects of a scientist, science educator, and mentor. His contributions to science education in the state of California are varied, significant, and I am sure will continue well into the future.” Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

NGSS: Making Your Life Easier

Posted: Tuesday, September 20th, 2016

by Peter A’hearn

Wait… What?

NGSS is a big shift. Teachers need to learn new content, figure out how this whole engineering thing relates to science, and develop new unit and lesson plans. How could NGSS possibly make life easier?

The idea that NGSS could make our lives easier came to me during the California State NGSS Rollout #1 Classroom Example lesson on chromatography. I have since done this lesson with high school chemistry students and it made me think back to having my own students do chromatography. I spent lots of time preparing to make sure the experiment went well and achieved the “correct” result. I pre-prepared the solutions and organized and prepped the materials. I re-wrote and re-wrote again the procedure so there was no way a kid could get it wrong. I spent 20 minutes before the lab modeling all of the steps in class, so there was no way to do it wrong. Except that it turns out there were many. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Celestial Highlights, September 2016

Posted: Tuesday, September 20th, 2016

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graph of evening planet setting times by Dr. Jeffrey L. Hunt 

Our evening twilight chart for September, depicting the sky about 40 minutes after sunset from SoCal, shows brilliant Venus remaining low, creeping from W to WSW and gaining a little altitude as the month progresses. Its close encounter within 2.5° N of Spica on Sept. 18 is best seen with binoculars to catch the star low in bright twilight. The brightest stars in the evening sky are golden Arcturus descending in the west, and blue-white Vega passing just north of overhead. Look for Altair and Deneb completing the Summer Triangle with Vega. The triangle of Mars-Saturn-Antares expands as Mars seems to hold nearly stationary in SSW as the month progresses, while Saturn and Antares slink off to the SW. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.