May/June 2017 – Vol. 29 No. 7

Supporting Argumentation Through Student Talk

Posted: Monday, October 19th, 2015

By Judi Kusnick, Angie Ruiz, and Susheela Nath

A central element of all of the new standards – the Next Generation Science Standards, the Common Core Math standards and the Common Core English Language Arts standards – is that students are making sense of the world through argumentation. Let’s explore how student talk can support development of students’ argumentation skills in a classroom setting.

Mrs. Ramierez’s fifth grade class has been working on understanding the particle model of matter for two weeks. First they explored sugar – sugar cubes, granulated sugar, powdered sugar – and concluded that bigger things can be made of much smaller things. They investigated the conservation of matter by mixing baking soda and vinegar in a bottle on a digital scale. When the bottle was open to the air, the mixture lost mass. When the bottle was closed, the mass stayed the same. From this result the class deduced that there must have been some invisible mass that went into the air when the bottle was open, but was captured in the system when the bottle was closed. They agreed to call the very tiny invisible bits of matter particles.

Now the class is ready to think about how particles move. Each group of students is given a beaker of ice-cold water, a beaker of room temperature water, and a beaker of very hot water. Mrs. Ramierez instructs the students to put one drop of food coloring in the three beakers at the same time and observe what happens over the next five minutes. Each group of students has a large whiteboard to work on. Their task is to record their observations in words and pictures on one half of the whiteboard. The recorder for each group draws the three beakers down one edge of the whiteboard, and the students prepare to observe.

Mrs. Ramierez gives the signal to start, and excited murmurs rise around the room as the students watch the food coloring. In the beaker of hot water, the color immediately begins to swirl through the mixture. In a few minutes, the liquid in the beaker is a uniform color. In the room temperature beaker, the food coloring sinks to the bottom, slowly spreads across the bottom and gradually starts to mix with the cool water above it. At the end of five minutes there is more intense color toward the bottom of the beaker, and lighter color toward the top. In the beaker of ice-cold water, the food coloring drops to the bottom and sits in a well-defined pile for almost all of the five minutes, with only a tiny bit of color spreading into the surrounding water.

Mrs. Ramierez calls the class to attention. The reporter for each group describes what their group observed, and Mrs. Ramierez records the observations on a piece of poster paper. “Children, now it is your job to explain why you saw different things in different cups. Why did the color mix completely in the hot water, partially in the cool water, and not at all in the ice-cold water? Use the other half of your whiteboard to show your explanation in words and pictures. Your explanation must include these two words: particles and motion. How do you think the motion of the particles is different in each of the cups? Get started!”

The room fills with the buzz of student talk. In each group, students share ideas about what they think is happening, and their recorder puts their ideas on the whiteboard. As Mrs. Ramierez walks through the room, she sees that while each group represents their ideas in a similar way, they are all converging on the same idea – that the particles in the hot water must be moving faster than the particles in the cool water, and the particles in the ice-cold water are moving even slower. She reminds herself to have the students record their current thinking in their science notebook in their own words.

Mrs. Ramierez’s lesson is a lovely example of putting student talk and argumentation at the center of science education. Students have science experiences that they are invited to make sense of. Through discussion with each other, the students are able to try out ideas and rehearse constructing explanations in a safe setting. All students are drawn into the process of building explanations, instead of the few students that might participate in a whole class discussion. Students are connecting their new science experience to the particle model they have been building in previous activities. They are using evidence to support their ideas, getting them ready to construct formal arguments.

The next step for Mrs. Ramierez’s students is to turn their informal oral and diagramed explanations into written formal arguments. An argument has three parts:

  • Claim – usually a prediction, conclusion or generalization
  • Evidence – usually drawn from experience or from text
  • Reasoning/Explanation – a statement of how the evidence supports the claim

Chart

What argument can we build from the observation of the colored water? Here is the argument structured in the graphic organizer:

Chart

Mrs. Ramierez’s students are now well-prepared to turn their explanations into a written argument through the use of well-scaffolded instruction:

  • Solid preparation in developing a model
  • A carefully-chosen science experience that lends itself to student explanations.
  • Small group discussion to foster participation in a safe setting and allow rehearsal of ideas, coupled with representation of the ideas in words and pictures.
  • Informal writing in the science notebook to help solidify ideas.
  • Explicitly detailing claim, evidence and reasoning using the graphic organizer.

Transforming the text in the graphic organizer into paragraph form.

Providing students with opportunities to construct arguments to explain interesting phenomena is the essence of NGSS and the scientific enterprise itself. Careful scaffolding ensures that all students can achieve the goals of our new science standards.


Judi Kusnick is an employee of California State University Sacramento, and can be reached at kusnickje@csus.edu
Angie Ruiz works at Mission Valley Elementary School, and can be contacted at aruiz7712@gmail.com
Susheela Nath works for Aspire Public Schools and is a member of CSTA, her e-mail address is susheela.nath@aspirepublicschools.org

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

One Response

  1. Nice write-up. For the benefit of teachers there should be a single place where a compilation of such ideas is available.

Leave a Reply

LATEST POST

Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here: https://www.surveymonkey.com/r/HappyAtoms

Please contact Rosanne Luu at rluu@wested.org or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.