September 2016 – Vol. 29 No. 1

Supporting Argumentation Through Student Talk

Posted: Monday, October 19th, 2015

By Judi Kusnick, Angie Ruiz, and Susheela Nath

A central element of all of the new standards – the Next Generation Science Standards, the Common Core Math standards and the Common Core English Language Arts standards – is that students are making sense of the world through argumentation. Let’s explore how student talk can support development of students’ argumentation skills in a classroom setting.

Mrs. Ramierez’s fifth grade class has been working on understanding the particle model of matter for two weeks. First they explored sugar – sugar cubes, granulated sugar, powdered sugar – and concluded that bigger things can be made of much smaller things. They investigated the conservation of matter by mixing baking soda and vinegar in a bottle on a digital scale. When the bottle was open to the air, the mixture lost mass. When the bottle was closed, the mass stayed the same. From this result the class deduced that there must have been some invisible mass that went into the air when the bottle was open, but was captured in the system when the bottle was closed. They agreed to call the very tiny invisible bits of matter particles.

Now the class is ready to think about how particles move. Each group of students is given a beaker of ice-cold water, a beaker of room temperature water, and a beaker of very hot water. Mrs. Ramierez instructs the students to put one drop of food coloring in the three beakers at the same time and observe what happens over the next five minutes. Each group of students has a large whiteboard to work on. Their task is to record their observations in words and pictures on one half of the whiteboard. The recorder for each group draws the three beakers down one edge of the whiteboard, and the students prepare to observe.

Mrs. Ramierez gives the signal to start, and excited murmurs rise around the room as the students watch the food coloring. In the beaker of hot water, the color immediately begins to swirl through the mixture. In a few minutes, the liquid in the beaker is a uniform color. In the room temperature beaker, the food coloring sinks to the bottom, slowly spreads across the bottom and gradually starts to mix with the cool water above it. At the end of five minutes there is more intense color toward the bottom of the beaker, and lighter color toward the top. In the beaker of ice-cold water, the food coloring drops to the bottom and sits in a well-defined pile for almost all of the five minutes, with only a tiny bit of color spreading into the surrounding water.

Mrs. Ramierez calls the class to attention. The reporter for each group describes what their group observed, and Mrs. Ramierez records the observations on a piece of poster paper. “Children, now it is your job to explain why you saw different things in different cups. Why did the color mix completely in the hot water, partially in the cool water, and not at all in the ice-cold water? Use the other half of your whiteboard to show your explanation in words and pictures. Your explanation must include these two words: particles and motion. How do you think the motion of the particles is different in each of the cups? Get started!”

The room fills with the buzz of student talk. In each group, students share ideas about what they think is happening, and their recorder puts their ideas on the whiteboard. As Mrs. Ramierez walks through the room, she sees that while each group represents their ideas in a similar way, they are all converging on the same idea – that the particles in the hot water must be moving faster than the particles in the cool water, and the particles in the ice-cold water are moving even slower. She reminds herself to have the students record their current thinking in their science notebook in their own words.

Mrs. Ramierez’s lesson is a lovely example of putting student talk and argumentation at the center of science education. Students have science experiences that they are invited to make sense of. Through discussion with each other, the students are able to try out ideas and rehearse constructing explanations in a safe setting. All students are drawn into the process of building explanations, instead of the few students that might participate in a whole class discussion. Students are connecting their new science experience to the particle model they have been building in previous activities. They are using evidence to support their ideas, getting them ready to construct formal arguments.

The next step for Mrs. Ramierez’s students is to turn their informal oral and diagramed explanations into written formal arguments. An argument has three parts:

  • Claim – usually a prediction, conclusion or generalization
  • Evidence – usually drawn from experience or from text
  • Reasoning/Explanation – a statement of how the evidence supports the claim


What argument can we build from the observation of the colored water? Here is the argument structured in the graphic organizer:


Mrs. Ramierez’s students are now well-prepared to turn their explanations into a written argument through the use of well-scaffolded instruction:

  • Solid preparation in developing a model
  • A carefully-chosen science experience that lends itself to student explanations.
  • Small group discussion to foster participation in a safe setting and allow rehearsal of ideas, coupled with representation of the ideas in words and pictures.
  • Informal writing in the science notebook to help solidify ideas.
  • Explicitly detailing claim, evidence and reasoning using the graphic organizer.

Transforming the text in the graphic organizer into paragraph form.

Providing students with opportunities to construct arguments to explain interesting phenomena is the essence of NGSS and the scientific enterprise itself. Careful scaffolding ensures that all students can achieve the goals of our new science standards.

Judi Kusnick is an employee of California State University Sacramento, and can be reached at
Angie Ruiz works at Mission Valley Elementary School, and can be contacted at
Susheela Nath works for Aspire Public Schools and is a member of CSTA, her e-mail address is

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

One Response

  1. Nice write-up. For the benefit of teachers there should be a single place where a compilation of such ideas is available.

Leave a Reply


California Science Assessment Update

Posted: Wednesday, October 12th, 2016

by Jessica Sawko

In June 2016 California submitted a waiver application to discontinue using the old CST (based on 1998 standards) and conduct two years of pilot and field tests (in spring 2017 and 2018, respectively) of the new science assessment designed to support our state’s current science standards (California Next Generation Science Standards (CA-NGSS) adopted in 2013). The waiver was requested because no student scores will be provided as a part of the pilot and field tests. The CDE received a response from the U.S. Department of Education (ED) on September 30, 2016, which provides the CDE the opportunity to resubmit a revised waiver request within 60 days. The CDE will be revising the waiver request and resubmitting as ED suggested.

At its October 2016 North/South Assessment meetings CDE confirmed that there will be no administration of the old CST in the spring of 2017. (An archive of the meeting is available at Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Some ways to celebrate the 100th anniversary of the National Park Service in your classroom

Posted: Thursday, September 22nd, 2016

by Carol Peterson

1) To celebrate the 100th anniversary of the National Park Service, Google has put together a collection of virtual tours combining 360-degree video, panoramic photos and expert narration. It’s called “The Hidden Worlds of the National Parks” and is accessible right from the browser. You can choose from one of five different locales, including the Kenai Fjords in Alaska and Bryce Canyon in Utah, and get a guided “tour” from a local park ranger. Each one has a few virtual vistas to explore, with documentary-style voiceovers and extra media hidden behind clickable thumbnails. Ideas are included for use in classrooms. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2016 Award Recipients – Join CSTA in Honoring Their Accomplishments

Posted: Thursday, September 22nd, 2016

CSTA is pleased to announce the winners of the 2016 CSTA Awards for Distinguished Contributions, Margaret Nicholson Distinguished Service Award, 2014 and 2015 PAEMST-Science recipients from California, and the 2016 California PAEMST Finalists. The following individuals and organizations will be honored during the 2016 California Science Education Conference  on October 21- 23 in Palm Springs. This year’s group of awardees are truly outstanding. Please join us in congratulating them!

Margaret Nicholson Distinguished Service Award

John Keller

John Keller

The Margaret Nicholson Distinguished Service Award honors an individual who has made a significant contribution to science education in the state and who, through years of leadership and service, has truly made a positive impact on the quality of science teaching. This year’s recipient is John Keller, Ph.D. Dr. Keller is Associate Professor, Cal Poly San Luis Obispo and Co-Director, Center for Engineering, Science, and Mathematics Education, Cal Poly San Luis Obispo. In her letter of recommendation, SDSU science education faculty and former CSTA board member Donna Ross wrote: “He brings people together who share the desire to make a difference in the development and implementation of programs for science teaching. Examples of these projects include the Math and Science Teaching Initiative (MSTI), Noyce Scholars Program, Western Regional Noyce Initiative, and the Science Teacher and Researcher (STAR) program.” Through his work, he has had a dramatic impact on science teacher education, both preservice and in-service, in California, the region, and the country. He developed and implemented the STEM Teacher and Researcher Program which aims to produce excellent K-12 STEM teachers by providing aspiring teachers with opportunities to do authentic research while helping them translate their research experience into classroom practice. SFSU faculty member Larry Horvath said it best in his letter:“John Keller exemplifies the best aspects of a scientist, science educator, and mentor. His contributions to science education in the state of California are varied, significant, and I am sure will continue well into the future.” Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

NGSS: Making Your Life Easier

Posted: Tuesday, September 20th, 2016

by Peter A’hearn

Wait… What?

NGSS is a big shift. Teachers need to learn new content, figure out how this whole engineering thing relates to science, and develop new unit and lesson plans. How could NGSS possibly make life easier?

The idea that NGSS could make our lives easier came to me during the California State NGSS Rollout #1 Classroom Example lesson on chromatography. I have since done this lesson with high school chemistry students and it made me think back to having my own students do chromatography. I spent lots of time preparing to make sure the experiment went well and achieved the “correct” result. I pre-prepared the solutions and organized and prepped the materials. I re-wrote and re-wrote again the procedure so there was no way a kid could get it wrong. I spent 20 minutes before the lab modeling all of the steps in class, so there was no way to do it wrong. Except that it turns out there were many. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Celestial Highlights, September 2016

Posted: Tuesday, September 20th, 2016

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graph of evening planet setting times by Dr. Jeffrey L. Hunt 

Our evening twilight chart for September, depicting the sky about 40 minutes after sunset from SoCal, shows brilliant Venus remaining low, creeping from W to WSW and gaining a little altitude as the month progresses. Its close encounter within 2.5° N of Spica on Sept. 18 is best seen with binoculars to catch the star low in bright twilight. The brightest stars in the evening sky are golden Arcturus descending in the west, and blue-white Vega passing just north of overhead. Look for Altair and Deneb completing the Summer Triangle with Vega. The triangle of Mars-Saturn-Antares expands as Mars seems to hold nearly stationary in SSW as the month progresses, while Saturn and Antares slink off to the SW. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.