May/June 2017 – Vol. 29 No. 7

Systems Thinking Skills in the Engineering Classroom

Posted: Wednesday, May 11th, 2016

by Cynthia Berger

Reprinted with permission from http://blog.eie.org/systems-thinking-skills-in-the-engineering-classroom.

The students in Jean Facchiano’s fourth-grade class have spent the morning engineering their own models of permeable membranes, using ordinary kitchen supplies like sponges, coffee filters, and perforated aluminum foil. The goal is to design a system that lets water drip into a frog habitat, keeping the container slightly damp, not dry or flooded.

Berger1.1Each group of students has come up with their own unique system for controlling water flow into the habitat. Now, in the video at right, the students present their results. It’s not just a show-and-tell; it’s a concise demonstration of elementary students starting to apply their systems-thinking skills.

Can Young Children Really Be Systems Thinkers?

Testing a permeable membrane for a frog habitat.

Testing a permeable membrane for a frog habitat.

The term “systems thinking” refers to the ability to explore and understand the relationships between a system (such as an ecosystem, weather system, or heating system) and its component parts and see the network of relationships among system components. Systems thinking is a skill that will be critical for tomorrow’s adults as they face 21st-century challenges like dealing with climate change, providing healthcare, or meeting society’s energy needs.

NascoAd

-Advertisement-

Once upon a time, educators thought that elementary-school-aged children simply weren’t capable of the abstract thought required for systems thinking. But in recent years, evidence has supported the idea that elementary students CAN apply systems thinking—and that schools should be proactive in helping students do this, because of the positive impact systems thinking has on learning.

At EiE, we consider systems thinking to be an “engineering habit of mind”—a way of thinking, developed through engagement with engineering, that builds positive learning skills for a lifetime. The new Next Generation Science Standards take this same view; they create explicit expectations that young students will apply systems thinking.

Berger2Consider that NGSS cross-cutting concepts include “patterns,” “cause and effect,” “systems and systems models,” and “flows, cycles and conservation in energy and matter.” Standards like K-ESS3-1 (“Use a model to represent the relationship between the needs of different plants or animals [including humans] and the places they live”) also presume that very young students will engage in systems thinking.

Strategies for Promoting Systems Thinking

To develop your students’ systems-thinking skills, you must move the focus of lessons beyond remembering facts and challenge students to use their skills of evaluation and invention. Hands-on engineering is ideal for engaging students in these processes.

Learn more about EiE's Engineering Habits of Mind

Learn more about EiE’s Engineering Habits of Mind

In the “engineering membranes” exercise, for example, students build their initial models based on what they’ve learned in science class about membranes and about the basic needs of live animals, like frogs, who need both air and water to survive. After the design step, they test their models to see what happens when the component parts of the system interact.

In this testing process, they can observe how elements in the system (for example, water in the habitat) change over time. They work to connect cause and effect—to understand how each component of the design has an effect on how quickly the water moves through the membrane. Finally, they must explain their results, drawing on available evidence, and predict how modifications to the design will change the way the system functions.

The Teachable Moment

Berger5In the video to the right, the teacher monitors how her students are thinking about their results, ready to push them to think more deeply. You see two students talking about membranes that failed—one membrane let too much water pass through; the other didn’t let enough water through. Both students attribute the failure to the same component in the system, and Ms. Facchiano prods them to see how these views are contradictory.

An “Improve” step is an important component of the engineering design process. The students in this class go on to redesign their membranes, based on what they understand about their systems. Watch the video above to see them reflect on that experience—and to see the excitement that engineering and systems thinking can generate.

This post originally appeared on the Engineering is Elementary® blog on 2/16/16 at http://blog.eie.org/.

Engineering is Elementary is a project of the National Center for Technological Literacy® at the Museum of Science, Boston.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Leave a Reply

LATEST POST

CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or zi@cascience.org.)

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.