September 2016 – Vol. 29 No. 1

Systems Thinking Skills in the Engineering Classroom

Posted: Wednesday, May 11th, 2016

by Cynthia Berger

Reprinted with permission from

The students in Jean Facchiano’s fourth-grade class have spent the morning engineering their own models of permeable membranes, using ordinary kitchen supplies like sponges, coffee filters, and perforated aluminum foil. The goal is to design a system that lets water drip into a frog habitat, keeping the container slightly damp, not dry or flooded.

Berger1.1Each group of students has come up with their own unique system for controlling water flow into the habitat. Now, in the video at right, the students present their results. It’s not just a show-and-tell; it’s a concise demonstration of elementary students starting to apply their systems-thinking skills.

Can Young Children Really Be Systems Thinkers?

Testing a permeable membrane for a frog habitat.

Testing a permeable membrane for a frog habitat.

The term “systems thinking” refers to the ability to explore and understand the relationships between a system (such as an ecosystem, weather system, or heating system) and its component parts and see the network of relationships among system components. Systems thinking is a skill that will be critical for tomorrow’s adults as they face 21st-century challenges like dealing with climate change, providing healthcare, or meeting society’s energy needs.



Once upon a time, educators thought that elementary-school-aged children simply weren’t capable of the abstract thought required for systems thinking. But in recent years, evidence has supported the idea that elementary students CAN apply systems thinking—and that schools should be proactive in helping students do this, because of the positive impact systems thinking has on learning.

At EiE, we consider systems thinking to be an “engineering habit of mind”—a way of thinking, developed through engagement with engineering, that builds positive learning skills for a lifetime. The new Next Generation Science Standards take this same view; they create explicit expectations that young students will apply systems thinking.

Berger2Consider that NGSS cross-cutting concepts include “patterns,” “cause and effect,” “systems and systems models,” and “flows, cycles and conservation in energy and matter.” Standards like K-ESS3-1 (“Use a model to represent the relationship between the needs of different plants or animals [including humans] and the places they live”) also presume that very young students will engage in systems thinking.

Strategies for Promoting Systems Thinking

To develop your students’ systems-thinking skills, you must move the focus of lessons beyond remembering facts and challenge students to use their skills of evaluation and invention. Hands-on engineering is ideal for engaging students in these processes.

Learn more about EiE's Engineering Habits of Mind

Learn more about EiE’s Engineering Habits of Mind

In the “engineering membranes” exercise, for example, students build their initial models based on what they’ve learned in science class about membranes and about the basic needs of live animals, like frogs, who need both air and water to survive. After the design step, they test their models to see what happens when the component parts of the system interact.

In this testing process, they can observe how elements in the system (for example, water in the habitat) change over time. They work to connect cause and effect—to understand how each component of the design has an effect on how quickly the water moves through the membrane. Finally, they must explain their results, drawing on available evidence, and predict how modifications to the design will change the way the system functions.

The Teachable Moment

Berger5In the video to the right, the teacher monitors how her students are thinking about their results, ready to push them to think more deeply. You see two students talking about membranes that failed—one membrane let too much water pass through; the other didn’t let enough water through. Both students attribute the failure to the same component in the system, and Ms. Facchiano prods them to see how these views are contradictory.

An “Improve” step is an important component of the engineering design process. The students in this class go on to redesign their membranes, based on what they understand about their systems. Watch the video above to see them reflect on that experience—and to see the excitement that engineering and systems thinking can generate.

This post originally appeared on the Engineering is Elementary® blog on 2/16/16 at

Engineering is Elementary is a project of the National Center for Technological Literacy® at the Museum of Science, Boston.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

Leave a Reply


California Science Assessment Update

Posted: Wednesday, October 12th, 2016

by Jessica Sawko

In June 2016 California submitted a waiver application to discontinue using the old CST (based on 1998 standards) and conduct two years of pilot and field tests (in spring 2017 and 2018, respectively) of the new science assessment designed to support our state’s current science standards (California Next Generation Science Standards (CA-NGSS) adopted in 2013). The waiver was requested because no student scores will be provided as a part of the pilot and field tests. The CDE received a response from the U.S. Department of Education (ED) on September 30, 2016, which provides the CDE the opportunity to resubmit a revised waiver request within 60 days. The CDE will be revising the waiver request and resubmitting as ED suggested.

At its October 2016 North/South Assessment meetings CDE confirmed that there will be no administration of the old CST in the spring of 2017. (An archive of the meeting is available at Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Some ways to celebrate the 100th anniversary of the National Park Service in your classroom

Posted: Thursday, September 22nd, 2016

by Carol Peterson

1) To celebrate the 100th anniversary of the National Park Service, Google has put together a collection of virtual tours combining 360-degree video, panoramic photos and expert narration. It’s called “The Hidden Worlds of the National Parks” and is accessible right from the browser. You can choose from one of five different locales, including the Kenai Fjords in Alaska and Bryce Canyon in Utah, and get a guided “tour” from a local park ranger. Each one has a few virtual vistas to explore, with documentary-style voiceovers and extra media hidden behind clickable thumbnails. Ideas are included for use in classrooms. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2016 Award Recipients – Join CSTA in Honoring Their Accomplishments

Posted: Thursday, September 22nd, 2016

CSTA is pleased to announce the winners of the 2016 CSTA Awards for Distinguished Contributions, Margaret Nicholson Distinguished Service Award, 2014 and 2015 PAEMST-Science recipients from California, and the 2016 California PAEMST Finalists. The following individuals and organizations will be honored during the 2016 California Science Education Conference  on October 21- 23 in Palm Springs. This year’s group of awardees are truly outstanding. Please join us in congratulating them!

Margaret Nicholson Distinguished Service Award

John Keller

John Keller

The Margaret Nicholson Distinguished Service Award honors an individual who has made a significant contribution to science education in the state and who, through years of leadership and service, has truly made a positive impact on the quality of science teaching. This year’s recipient is John Keller, Ph.D. Dr. Keller is Associate Professor, Cal Poly San Luis Obispo and Co-Director, Center for Engineering, Science, and Mathematics Education, Cal Poly San Luis Obispo. In her letter of recommendation, SDSU science education faculty and former CSTA board member Donna Ross wrote: “He brings people together who share the desire to make a difference in the development and implementation of programs for science teaching. Examples of these projects include the Math and Science Teaching Initiative (MSTI), Noyce Scholars Program, Western Regional Noyce Initiative, and the Science Teacher and Researcher (STAR) program.” Through his work, he has had a dramatic impact on science teacher education, both preservice and in-service, in California, the region, and the country. He developed and implemented the STEM Teacher and Researcher Program which aims to produce excellent K-12 STEM teachers by providing aspiring teachers with opportunities to do authentic research while helping them translate their research experience into classroom practice. SFSU faculty member Larry Horvath said it best in his letter:“John Keller exemplifies the best aspects of a scientist, science educator, and mentor. His contributions to science education in the state of California are varied, significant, and I am sure will continue well into the future.” Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

NGSS: Making Your Life Easier

Posted: Tuesday, September 20th, 2016

by Peter A’hearn

Wait… What?

NGSS is a big shift. Teachers need to learn new content, figure out how this whole engineering thing relates to science, and develop new unit and lesson plans. How could NGSS possibly make life easier?

The idea that NGSS could make our lives easier came to me during the California State NGSS Rollout #1 Classroom Example lesson on chromatography. I have since done this lesson with high school chemistry students and it made me think back to having my own students do chromatography. I spent lots of time preparing to make sure the experiment went well and achieved the “correct” result. I pre-prepared the solutions and organized and prepped the materials. I re-wrote and re-wrote again the procedure so there was no way a kid could get it wrong. I spent 20 minutes before the lab modeling all of the steps in class, so there was no way to do it wrong. Except that it turns out there were many. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the K-12 science specialist in the Palm Springs Unified School District and is Region 4 Director for CSTA.

Celestial Highlights, September 2016

Posted: Tuesday, September 20th, 2016

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graph of evening planet setting times by Dr. Jeffrey L. Hunt 

Our evening twilight chart for September, depicting the sky about 40 minutes after sunset from SoCal, shows brilliant Venus remaining low, creeping from W to WSW and gaining a little altitude as the month progresses. Its close encounter within 2.5° N of Spica on Sept. 18 is best seen with binoculars to catch the star low in bright twilight. The brightest stars in the evening sky are golden Arcturus descending in the west, and blue-white Vega passing just north of overhead. Look for Altair and Deneb completing the Summer Triangle with Vega. The triangle of Mars-Saturn-Antares expands as Mars seems to hold nearly stationary in SSW as the month progresses, while Saturn and Antares slink off to the SW. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.