May/June 2017 – Vol. 29 No. 7

The Big Idea Page: A Creative Way to Emphasize the Crosscutting Concepts for Three Dimensional Learning

Posted: Monday, February 8th, 2016

by Jennifer Weibert

Making three-dimensional learning a reality in the classroom of teachers starting to implement the NGSS can be a struggle. In many cases, the Crosscutting Concepts are often an afterthought. According to A Framework for K-12 Science Education, “…the purpose of the Crosscutting Concepts is to help students deepen their understanding of the disciplinary core ideas, and develop a coherent and scientifically based view of the world” (NRC, 2012). This is achieved via the Crosscutting Concepts, “because they provide an organizational schema for interrelating knowledge from various science fields into a coherent and scientifically based view of the world” (Achieve, 2016). The NGSS were designed for all three dimensions (Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts) to work together allowing the teacher to create an environment where students make sense of real world phenomena. To measure the success of this in an NGSS aligned classroom, teachers need access to evidence of student understanding and thinking. The Big Idea Page was my solution for that.

I originally developed The Big Idea Page when I was teaching 8th grade science. The idea came about after using the Big Idea Thesis (a 5 paragraph essay at the end of each unit developed by the K-12 Alliance) as a way to synthesize student learning. Through trial and error I found that students needed to collect evidence of learning throughout the unit, not just at the end of the unit in a reflection. The idea of a using a graphic organizer as a tool that students could use to process information as they worked through unit came to mind. It turned out to work very well, especially with my students who were English language learners. As an added benefit, the tool also has value in teacher planning where questions for the unit are generated by looking at the breadth of content students will be engaging in. In my current position with the Fresno County Office of Education, I now provide professional development to teachers, and I’ve experienced that they too find the Big Idea Page to be a useful tool for both student learning and teacher planning.

-Advertisement-

-Advertisement-

Students actively engage in making Big Idea Pages because it is their own personal processing page. As a result, no two students have the same exact looking page. Below is are two examples completed student Big Idea Pages for the same unit. (For more information and detailed instructions on how to construct a Big Idea Page with examples of student work in several grades click here.)

The questions you see in the light bulbs drawn in these examples were based on the 1998 standards. They are fact based, and do not reflect the three-dimensional nature of the NGSS. My success in using the Big Idea Page with the 1998 standards led me to suspect that it could be used to create NGSS-aligned units of instruction and would be especially useful for integration of Crosscutting Concepts. I suggested to my K-8 NGSS Early Implementation Initiative content cadre team (consisting of Herberta Zulueta of Oakland Unified and Dr. Art Sussman, one the authors of the draft California Science Framework), that we adapt the Big Idea Page to reflect three-dimensional learning and use it with our 7th grade Early Implementer teachers.

Below is the year-long sequence we developed with the integrated model for 7th grade. You’ll note that this sequence is parallel to the sequence identified in the draft California Science Framework.

Weibert-3

Click image for full size view.

We taught components of the first unit of this sequence to our 7th grade Early Implementer teachers from the Oakland area this past summer. We made the decision to break the unit into four pieces that could be tied to real life phenomena, offering opportunity for questions that would engage participants in making their own questions, provide opportunities for observable investigations, and create “buy-in.”

To accomplish this, we began by identifying how the Performance Expectations (PE’s) and Crosscutting Concepts (CCC’s) for each of the questions were divided. The Disciplinary Core Ideas (DCI’s) that correlate are found on the outside of the light bulb you see in the image below.

Click to view a full size image.

Click to view a full size image.

You’ll notice that we also identified the Science and Engineering Practices that students would engage in, but our focus on Crosscutting Concepts helped us think about phenomenon and drive our questions. For this unit, the two CCC’s of Patterns and Energy and Matter were prominent. One additional consideration we had when generating questions was to stay away from vocabulary that would lead to an answer; we wanted to make the questions open enough for participants to collect evidence to answer it. For example, the first question we generated was intended to facilitate participant investigations of bonding and develop understanding that what happens at the microscopic level can also be seen on the macroscopic level. We came up with a creative way of asking about patterns of strong bonds in nature by asking the question, “Why don’t rocks melt on the playground”? The tool allowed us to be explicit about the use of Crosscutting Concepts in our planning and to generate a question broad enough to sustain investigation by participants. The image below shows the questions that we used for the 7th grade unit: Living and non-living things are made of matter.

Click to view a full size image.

Click to view a full size image.

Once we had determined our phenomenon questions, we were now ready to teach the unit. On the first day of the unit, the Big Idea Page was created in our session by asking the participants to draw a light bulb (or any other central icon of their choice that fits the theme of the unit). All four phenomenon-based questions were given to the participants to write down. Participants then work during the time we had together in class and go back to the Big Idea Page every so often and fill in evidence. As instructors, we would monitor work and ask smaller questions of our participants that related to the Crosscutting Concept as they investigated phenomenon and then encourage them to make that connection on their Big Idea Page. (Initially, participants or students new to this need teacher prompting to work on this page. In actual classroom practice, once students understand the purpose of the Big Idea Page, they often go back to this page on their own as their learning progresses to make connections.)

The Big Idea Page has great potential beyond daily input. Culminating activities at the end of the unit could include having students make a collaborative group Big Idea Page or use their evidence from their existing Big Idea Page and write an answer to a question in paragraph form for an essay. Both of these examples would provide another opportunity to bring back the Crosscutting Concept. For example, “what patterns explain the idea that living and non-living things are made of matter?” could be an end of unit question. Students eventually realize the value of the Big Idea Page as a tool that will help them with an end-of-unit task. Additionally, while some teachers include one question from the Big Idea Page on a unit test, others let this page be used as a resource by students on their test to further encourage student buy-in and support quality learning throughout the unit.

Overall, the process of using the Big Idea Page as a tool for constructing linkage among the three dimensions of teaching in the NGSS enhances a teacher’s ability to design, construct and deliver lessons that facilitate deeper understanding among students. It is also a creative tool to help teachers and students start digging into Crosscutting Concepts.

References:

Achieve (2016). Three Dimensions. Retrieved from http://www.nextgenscience.org/three-dimensions

National Resource Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

Fresno County Office of Education Big Idea Page with examples of student work in several grades: http://stem.fcoe.org/resources/science-notebooks.

Jennifer Weibert is a Science Coordinator for the Fresno County Office of Education and a member of CSTA. She can be reached at jweibert@fcoe.org

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or zi@cascience.org.)

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.