May/June 2017 – Vol. 29 No. 7

The Meltdown: Using the “Surprise” Factor to Challenge Misconceptions

Posted: Wednesday, April 2nd, 2014

by Barbara Woods 

“No way!” “That can’t be!” “But I thought…” When students experience an outcome that goes against what their own mental construct tells them should happen in the real world, the “surprise” response creates a flurry of brain activity. This makes it easier for students to take on and absorb challenging material.  Although misconceptions about scientific principles often make it difficult for students to fully understand new concepts, using discrepant events in which the “unexpected” occurs encourages students to challenge their own perceptions as they seek to know the “why” behind the experience.

When teachers set up these kinds of experiences, they create many opportunities. Not only are the conditions ripe for applying the crosscutting concepts found in the Next Generation Science Standards (NGSS), they also create a climate primed for rich discussions that exemplify the Language Arts Common Core Speaking and Listening standards. In addition, they develop a classroom culture that nurtures the exploration of ideas using reasoning and evidence, which is at the heart of the Common Core standards.

The trick to using this strategy effectively is to anticipate the misconceptions students have and then design an investigation that challenges those misconceptions. To identify misunderstandings, teachers can think back to their own struggles with understanding a new concept. Teachers can also analyze student written responses in a “quick write” where students explain what they think they know about a key idea.

For example, from a young age sometimes the way our own senses lead our brains to perceive heat energy transfer goes against the scientific explanation for heat exchange events. Students also have many misconceptions around the idea of “melting.”  An activity I call “The Meltdown” challenges those ideas and can be used to introduce a unit on heat energy transfer or states of matter.  In this investigation, student groups receive two flat black 3-inch square blocks that initially appear the same, but are actually made of different materials.  Their first task is to use their senses to describe the similarities and differences between these blocks.  Then, they record the room temperature. They are not told that this is a clue to an explanation, but this data helps with the probing questions that guide the follow-up discussion.

At this point, students are asked to imagine an ice cube-melting contest between the two black blocks. Using what they know about the blocks and what causes things to melt, they predict which block will melt an ice cube faster and explain their reasoning. Students attempt to identify where the energy comes from to melt the ice cube.  They discuss their explanations and share predictions within their groups.

Students set the blocks side by side and place a rubber ring on each block to keep the ice cubes from sliding off and to contain the melt water. The rings can be the vinyl bracelets students commonly wear, or they can be purchased with a kit from a supply catalog. Once they are ready with their recording sheets and a timer, the excitement begins. The assigned students quickly grab two ice cubes. With great fanfare, the “Meltdown!” announcement signals them to place one ice cube on each block. That’s when the “wows” and the “no ways” occur. Even those who predicted correctly are amazed at the rapid results.

At this point, students are guided to ask themselves, as well as each other, questions about what just happened, such as “What could have made one ice cube melt so fast?” “What kept the other ice cube from melting?” “How…?” “Why…?” and “Where did the energy come from to melt the ice?” Drawing upon the idea of variables leads to discussing what is similar and different.  Often students propose that the air temperature affected how the ice cubes melted. That’s where the students can be reminded of the air temperature data.  Encourage them to further probe their thinking.

To keep the activity inquiry-based and Common Core-rich, students are not told what materials make up each block (one is a lightweight metal, such as aluminum, while the other is an insulator such as a plastic or foam product).  Students are left hanging with their proposed explanations, with the understanding that they will continue to reflect on this experience as they learn more.  As new concepts are introduced, regularly direct students to return to their original explanations and, using new evidence and understandings, annotate the accuracy or inaccuracy of their own explanations in a different colored pen or pencil.   This reinforces the idea of using reasoning and evidence to verify or nullify preconceptions. Encourage academic discussion by having them complete a sentence frame such as, “At first I thought ________, but further investigation indicates ________ because ________.”

The subsequent activity is two-fold. First, students repeat the investigation but this time while the melting occurs, group members converse using discipline-specific vocabulary to explain the scientific principles that cause the difference in melt rates. After this informed discussion, they write their individual explanations.  Then, they face the NGSS engineering challenge. They use everyday materials to design a container that prevents ice from melting while on a hike; or, conversely, their design goal can be to accelerate melting without outside heat energy input. Teachers may choose to present this engineering task at the beginning of the instructional unit.  With this problem in mind, students will have a purpose for seeking the knowledge that will guide their solutions.

Whatever your unit of study, identifying an activity that challenges students’ misconceptions at the onset increases their motivation to reconstruct their own thinking, which is when real learning occurs.

Barbara Woods is Curriculum Coach in the Galt Elementary School District and is a member of CSTA.

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

2 Responses

  1. This sounds fantastic, but what are the two different black blocks made of? Where do you purchase them?

  2. Elizabeth and other readers…to find the blocks, do a web search for “ice melting blocks.”
    Here are a few sources I was able to find:
    http://www.arborsci.com/ice-melting-blocks-thermal-conductivity
    http://www.teachersource.com/product/amazing-ice-melting-blocks/energy
    http://www.flinnsci.com/store/Scripts/prodView.asp?idProduct=16337
    http://smile.amazon.com/Arbor-Scientific-Ice-Melting-Blocks/dp/B000701B7O/ref=smi_www_rcolv2_go_smi?_encoding=UTF8&*Version*=1&*entries*=0
    http://www.pasco.com/prodCatalog/SE/SE-7317_ice-melting-blocks/
    https://www.wardsci.com/store/catalog/product.jsp?catalog_number=160503

Leave a Reply

LATEST POST

CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or zi@cascience.org.)

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.