September/October 2017 – Vol. 30 No. 1

The NGSS Crosscutting Concepts Make Science Learning 3D!

Posted: Tuesday, January 6th, 2015

by Peter A’Hearn

The idea that structure relates to function is pretty abstract for 1st graders. To get them thinking about structure and function in living things we started by having them draw a picture of what they thought a fish looks like. I have found that people have preconceived, cartoon versions of what things look like in their heads that can interfere with their ability to make objective observations of the real thing; it is helpful to give them a chance to draw that cartoon before having them observe the real thing and compare it to their drawing. (See How People Learn [1] for more about prior knowledge and also more about fish). 


Photo by Laura Otteson

Kids asked, “Can I draw a shark?!” Of course!

In their drawings, most of the fish looked like big round pancakes with tails, smiles, and bubbles.

Then, each group was given a goldfish and asked to compare the real fish to their drawing. They were asked to identify what was the same and what was different between the two?

“There is only one gill! They have lines in their fin. There is a fin on top and lots of fins on the bottom. Fish don’t smile!”

The students were then asked to make a second drawing. These were much more detailed, and some were excellent. Some were Picasso fish that showed all of the parts very clearly but at impossible angles.


Photo by Laura Otteson

Time to introduce structure and function.

Teacher: “Structure is a part, function is a job that it does. You have a part called a nose, what is the function?”

Students: “Smelling and breathing!”

Teacher: “Now how about the fish, what are the eyes for?”

Students: “So they don’t bump into things!” “For finding food.” “To keep away from sharks!”

At this point, now the students were ready to fill out their own charts of structure and function. As they did, they were encouraged to continue observing their goldfish; careful observers even noticed that the top fin was used to turn and two little fins in front were used to keep in place.

Photo by Laura Otteson

Photo by Laura Otteson

This was a first introduction to the crosscutting concept of structure and function, one of seven that are called out in the NGSS as the big ideas that connect the sciences. Hopefully these students will take this idea and apply it throughout their science learning to ideas across the science disciplines and to engineering.



The Next Generation Science Standards are asking for students to engage in 3D science- science learning that combines disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCCs). I have come to think of these three dimensions as What Scientists Know (DCIs), What Scientists Do (SEPs), and How Scientists Think (CCCs). Learning science this way holds great promise for helping students learn science in a way that leads to long-term understanding and appreciation. Most science teachers are familiar with most of the core ideas and the practices, but the crosscutting concepts may be a new thing.

I first wrote about the crosscutting concepts a year and a half ago. I also created a set of symbols (structure and function above) to help teachers to connect them to their student’s learning. The symbols, printable classroom posters, and lots of resources are at:

Crosscutting symbols in Debbie Gordon’s 2nd grade classroom.

Crosscutting symbols in Debbie Gordon’s 2nd grade classroom.

I have opportunities to have many conversations with teachers who are using the crosscutting concepts and the symbols in their classrooms and are excited to share their experiences. These conversations have helped me to see the crosscutting concepts in different ways and given me new insights about how to teach science through the crosscutting concepts.

At a cross-disciplinary training with Dr. Maria Simani a participant suggested that the crosscutting concepts were the “glasses you put on” to see the world like a scientist. It also became apparent that the crosscutting concepts are central to the questions that scientists ask of the natural world. Take any system you are studying (in this case we were playing with Rattlebacks- and ask questions through the lens of the crosscutting concepts: you will tap into some productive scientific questions. For example, “Why does the same amount of energy produce such different motion when the Rattleback spins in different directions? How does the structure determine its function?” How would this change at different scales? Much bigger? Smaller?”

Teachers can use the crosscutting concepts when they are designing the questions that drive their instruction. The lesson with the fish illustrates the idea that the crosscutting concepts need to be explicitly taught and in a concrete context. Abstract ideas need to be anchored to the real world to be meaningful. For example, Dr. Vickie Harri explicitly teaches the crosscutting concepts to her 8th grade students through a series of activities to highlight each one and uses kid friendly definitions. Some of her work is at:–ngss-and-other.html.

Gregg Borselli, also an 8th grade teacher, uses them to differentiate instruction in a end of lesson reflection. Most students chose the crosscutting concepts as they write which one best fits the lesson, but advanced students are challenged to come up with connections to the concepts that don’t have an obvious fit.

Christina Miramontes, a 5th grade teacher, asked her students to connect the crosscutting concepts, the GATE icons, and the Math Practices. Here is a snapshot of what they came up with:


At the end of a lesson, her students decide which crosscutting concept best fit what they learned- “Ball and Bat! Systems! Patterns!”

The crosscutting concepts ask us to look at science learning in new ways and to think about science in new ways. I’m excited about the learning and those who are working hard to help students see the world through these powerful concepts.

Additional resources:

[1] Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (1999). How People Learn: Brain, Mind, Experience, and School. Washington, DC: National Academy Press.


Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

2 Responses

  1. I really enjoyed this article. I am learning more and more about NGSS and I hear the term crosscutting concepts and I love the way that you have demonstrated it. I really appreciate that the teachers have allowed the students to set up their way of seeing it and then at the end of the lesson reflecting on where the lesson fit. I teach HS and my wheels are turning for how this same idea could be applied in my chemistry class. Thanks so much for the share!!

  2. Thanks and please share- so many of the crosscutting concepts come together in chemistry!

Leave a Reply


CSTA Is Now Accepting Nominations for Board Members

Posted: Friday, November 17th, 2017

Current, incoming, and outgoing CSTA Board of Directors at June 3, 2017 meeting.

Updated 7:25 pm, Nov. 17, 2017

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There are time and energy commitments, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interested in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.