September/October 2017 – Vol. 30 No. 1

The Seven Science Practices: Practices Five and Six

Posted: Monday, April 1st, 2013

by Bethany Dixon

The College Board has released seven science practices that will be shared through the disciplines. (Note: these are not to be confused with the NGSS “Science and Engineering Practices” from the Framework for K-12 Science Education.) The new Advanced Placement Curriculum Framework for AP Biology began this year, with plans for revamping AP Chemistry (2013-2014) and AP Physics (2014-2015) on the horizon. The new frameworks give students a chance to hone their skills at the lab bench, which is crucial for their success with the new AP Science Examinations and the upcoming transition to NGSS. Here is the third installment of the seven practices overview, with use-them-now tips for your classroom. The first four science practices can be found in our February and March issues of eCCS.

PRACTICE 5: Perform DATA ANALYSIS and evaluation of evidence.

As you consider this practice, the AP Biology Teacher Community is an invaluable resource for seasoned and new teachers alike. Here, you can gain insight from course veterans and AP Biology superstars like Paul Anderson of Bozeman Biology and Ann Brokaw of HHMI resource fame, just to name two of the hundreds of talented teachers who contribute.  Last spring with the new curriculum on the horizon, the teacher chat boards lit up with questions about “The New Math,” or more specifically, how to best incorporate statistics into their newly designed courses. Teachers from all over the nation weighed in and have been assembling resources at an impressive clip. A valuable addition that came out midway through the year is the new College Board “Quantitative Skills Guide.” This 114-page document provides teaching strategies and underscores the mission of the new curriculum. The Guide recommends instruction that ensures students are “able to recognize which data support a conclusion and are able to assess experimental validity and possible sources of error and propose explanations for them,” (College Board, 2012). It further cites Bio2010, the seminal 2003 report on undergraduate biology education aimed at enhancing and integrating science education.

But pedagogic revolution aside, what can WE do as teachers to increase student learning in regards to Data Analysis? The short answer is provide practice, which requires less number-crunching than a general statistics class and more working toward a deep understanding of setting up a valid experiment, especially understanding the concept of rejecting or failing to reject the null hypothesis. This comes back to articulating what reliable data looks like and how scientists talk about data. Crunching the formulas won’t be enough for student success. Using statistics on bad data is like doing an autopsy to try to find a medical cure: we can find out where the experiment died, but we can’t fix it. Students must go into their investigations understanding what they plan to measure and why they plan to measure it. The new grid-in questions on the AP Biology exam will require students to display their ability to use data analysis to determine standard deviation, standard error, mean, and chi-square, but the multiple-choice questions may ask students to determine whether errors in analysis or measurement may have taken place. The Guide breaks this down into teaching Graphing, Data Analysis, Hypothesis Testing, and Mathematical Modeling.

If your last statistics class was years ago and you weren’t in a stats-heavy field such as ecology or systematics, I highly recommend the free-to-download, “Handbook of Biological Statistics,” from John McDonald at the University of Delaware. His biology-friendly guide is a breath of fresh air and comes with the kind of patient, understanding tone that I hope to emulate with my students. Data analysis is intimidating for some students, but we mustn’t allow AP Biology to be a haven for math-a-phobes: mathematics is quickly becoming biology’s most powerful tool. Ensure that your students have the data analysis tools that they need for success both within and beyond the course by introducing statistics early, often, and with enthusiasm.

PRACTICE 6: Work with scientific EXPLANATIONS AND THEORIES.

The new curriculum does an exemplary job of involving students in scientific inquiry, and science practice number six is what students can use to connect their laboratory investigations and content standards. After their experiments, when data has been carefully analyzed, students will need to have plenty of practice making the jump from analyzed data to scientific explanations and theories. This frequently begins with giving students the opportunity to make scientific claims, link their claims to evidence, and then explain the reasoning that led them from evidence to claim.

One of my favorite strategies is the, “What I see, What it means,” graph-labeling technique from BSCS. Students label key points on their graphs and explain specifically what is occurring. For example, “What I see is that the prey population declines first and predator population later shows a decline, and what it means is that the relationships between the two populations are related, with predator population limited by the amount of prey.” I like to have students use sticky notes to use “What I see, what it means,” on both their own graphs and those from other students to see if they come up with the same claims based on identical evidence.

Students frequently feel that once they’ve graphed their data the results are obvious, and they move to writing conclusions before they’ve carefully considered their data, jumping to show what they believed “should” have happened in the lab instead of accurately reporting what DID happen.  Using student-made graphs for peer review provides more practice on data interpretation for their exam. It’s fascinating, (and frequently entertaining), to watch different groups of highly intelligent students make different conjectures based on the same evidence. In lab discussions it’s the group with the best ability to link their reasoning to the claim and the accepted scientific theories that we’re studying in lecture that is best able to come up with ideas to support their claims further. Watching young scientists go back to their textbooks to find ideas to support their claim and look for further opportunities to test their findings and see them validated by classmates brings electricity to the laboratory. Questions about how to “take it further” can engage your students in the excitement of research.  (What evidence would you need to convince you that the other group’s claim was correct? To refute your claim? Design an experiment and let’s test it!)  Teaching students to articulate their reasoning and link their claims to evidence is only half of the game, though. Students must next be able to explain what Big Ideas of biology are embedded in their results. What major theories are supported by their work? How does their work fit into the spectrum of the class? Does anything in their results seem to go against the accepted body of knowledge, and if so, what factors might attribute to this? Most importantly, students should be encouraged to investigate WHY theories have become what they are and to notice where science still has open questions. It’s invigorating to see how many questions that biology currently has open. Emphasize to students that there are exciting opportunities in biology and that these questions can be answered by actively pursuing research. AP Biology students frequently come into the subject wide-eyed about the exciting material they will study in our course; it’s up to teachers to sustain that initial enthusiasm and extend it to the process of science as well as the content so that students leave the course empowered with the understanding that not only can they understand biology, they can add to it.

Written by Bethany Dixon

Bethany Dixon is a science teacher at Western Sierra Collegiate Academy, is a CSTA Publications Committee Member, and is a member of CSTA.

Leave a Reply

LATEST POST

CSTA Is Now Accepting Nominations for Board Members

Posted: Friday, November 17th, 2017

Current, incoming, and outgoing CSTA Board of Directors at June 3, 2017 meeting.

Updated 7:25 pm, Nov. 17, 2017

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There are time and energy commitments, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interested in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.