September/October 2017 – Vol. 30 No. 1

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. The rooms lack counter space, sinks, outlets, or even flat desks or tables for the students to work. Secondly, many of the 6th and 7th grade teachers are cored, which means their time is split between teaching science and another subject, typically math. Set-up and clean-up from experimentally-based lessons is difficult as they switch from period to period. These challenges have forced teachers to come up with creative solutions that allow them to balance the students’ need for developing their science skills while still maintaining the teacher’s sanity.

One solution has been the incorporation of online science simulations, especially on days where hands-on work would be a management challenge. Although the district is not a 1:1 district (one electronic device for each student in the district), most of the middle school teachers have a Chromebook cart in their classroom or have easy access to Chromebooks for their students. Technology can be a powerful tool for learning science concepts beyond the typical research project or PowerPoint presentation. Virtual labs and online simulations allow students to develop necessary skills or SEPs. These simulations are definitely not a substitute for laboratory experiences, but teachers are finding them a great way to supplement and even extend the hands-on learning happening in their classrooms.

Example from a 6th-grade classroom:

MS-LS1-3 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Students in Mr. Nikkel’s 6th-grade classroom were exploring body systems. Through multiple activities, students explored, researched, collaborated, and communicated information related to specific body systems and how they interacted with each other. Mr. Nikkel wanted students to understand that the different body systems are made up of organs that must all work together in order for the system to function properly (Crosscutting Concept: Systems and System Models). He found an online simulation from Gizmos called “Digestive System” where the students investigated the order and function of the organs involved in the breaking down of food, absorption of nutrients, and the elimination of waste. Based on their previous knowledge from earlier in the unit, students made a prediction as to the correct order of the organs. Then they used the simulation to test their created digestive system. Their failed attempts at completing a working digestive system encouraged them to redesign their system and try again. Students were engaged in the challenge and were seeking out more information about the organs in order to get their system working properly. Mr. Nikkel observed that as the students were working on this simulation, they were noticing that different foods they were “feeding” to their simulation person were affecting the system differently. Each food had a different calorie count, amount of water absorbed, and difference in the nutrients provided to the system. This added information had the students asking more questions and doing more experimenting with their system beyond what Mr. Nikkel had initially assigned.

While working on the online simulation, students were engaged in multiple SEPs. The students developed a model of a working digestive system using qualitative data collected from multiple trials they designed (Planning and Conducting an Investigation). Students used their data analysis to construct an explanation and communicate that information to their peers. Mr. Nikkel enjoys the fact that the online simulations gave his students opportunities to explore something they couldn’t experience any other way. Plus, he was able to extend the activity over multiple days and it was easy for students to pick up and resume where they left off each day. His students enjoy the simulations as they appreciate opportunities to use technology, especially if it involves a challenge or problem to solve.

NGSS Implementer image

6th-grade students from Mr. Nikkel’s class work on an online simulation to gather data.

Example from an 8th-grade classroom:

MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe the cyclic pattern of lunar phases, eclipses of the sun and moon, and seasons.

Ms. Eastham’s 8th-grade students were working through a unit on Earth and space science incorporating the SEP, Developing and Using Models. Through multiple explores, students created a physical, movable model of the Earth-sun-moon system. Students used their model to construct and explanation by making a claim about the movement of celestial bodies within the Milky Way Galaxy using the evidence they collected and including their reasoning for using the supporting evidence. At this point, Ms. Eastham had the students use the online simulation from Gizmos called “Seasons in 3D.” Using a few guiding questions, students investigated the causes of the seasons by observing Earth as it orbits the Sun (Analyzing and Interpreting Data). Students began to notice patterns as they manipulated the path of the sun across the sky. They manipulated multiple variables such as the date and the location of the Earth. The students recorded data into their notebooks, communicated their data with each other, and then came up with a final model of the seasons.

While working on the online simulation, students were engaged in multiple SEPs. Students were gathering data, creating graphs of solar intensity and day length, and interpreting that data to find patterns. Students used their analysis to create an explanation of seasonal changes that they communicated with their peers. Ms. Eastham believes that online simulations are an extremely useful tool that provides the visuals students need to comprehend challenging science concepts that are difficult for students to grasp. Many of her students are visual learners and the simulation enabled them to manipulate variables and actually see what happened. Her students enjoy the online simulations and are always engaged with the learning that is incorporated with the challenges.

NGSS Implementer image 2

An example of how an 8th-grade student summarized her learning after two days of exploring an online simulation.

In developing lesson sequences using the 5E Instructional Cycle (developed by Biological Sciences Curriculum Study with “concept column” addition by the K-12 Alliance), teachers have found multiple ways to incorporate online simulations. Typically, a teacher does not use an online simulation at all points of a 5E lesson sequence, but instead carefully chooses one or two appropriate moments where it best supports the student learning. Here are some examples of how a teacher could “plug in” use of an online simulation at different points of the 5E learning sequence.

Engage Phase: Teachers could use a simulation in this phase as an introduction to an investigative phenomena where they present the simulation to the whole class while asking guiding questions to get students thinking and asking their own questions.

Explore Phase: Students could use simulations in this phase to explore the topic. Depending on the simulation, students design experiments and collect data or manipulate variables to determine the different outcomes. Students can work individually or in partners which encourages collaboration and communication.

Explain Phase: Students use a simulation in this phase to create an explanation that can be used as part of an “arguing from evidence” class activity.

Elaborate Phase: Students could apply the knowledge they have learned throughout a learning sequence to a new scenario presented through a simulation in this phase.

Evaluate Phase: Teachers could use questions provided with the simulation to formatively assess the students at juncture points within the learning sequence.

For more information on the use of the 5E in the NGSS, check out “Instructional Strategy for 3D Learning: 5E Instructional Cycle”, pages 12-16 of Chapter 11 (Instructional Strategies) of the California Science Framework: http://www.cde.ca.gov/ci/sc/cf/scifwprepubversion.asp

Using simulations in the middle school classroom allows students to experience investigations that are not commonly done in a classroom because of equipment or safety issues such as dropping a bowling ball off a 300 foot building or studying a nuclear reactor. Simulations provide a risk-free environment where students are free to experiment, make mistakes, and rethink and redesign without fear of breaking or destroying something that cannot be easily replaced in a traditional setting. And, simulations allow students to experiment and collect data by taking out the time constraints.

Kings Canyon Unified middle school teachers have seen an increase in student engagement and in the learning of Disciplinary Core Ideas with the incorporation of online simulations in their lesson sequences. Most important, the teachers are seeing a growth in their students’ abilities to do science as they focus on the Science and Engineering Practices of the Next Generation Science Standards.

References:

(2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. Retrieved from https://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts

(2016). 2016 Science Framework for California Public Schools Kindergarten through Grade 12. Sacramento, CA: The California Department of Education. Retrieved from http://www.cde.ca.gov/ci/sc/cf/scifwprepubversion.asp

Lesley Gates is a Project Director for the CA NGSS K-8 Early Implementation Initiative in Kings Canyon Unified School District and a member of CSTA.

 Loren Nikkel is a 6th grade science teacher, a Teacher Leader in the CA NGSS K-8 Early Implementation Initiative in Kings Canyon Unified School District, and a member of CSTA.

 Kambria Eastham is an 8th grade science teacher, a Teacher Leader in the CA NGSS K-8 Early Implementation Initiative in Kings Canyon Unified School District, and a member of CSTA.

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Leave a Reply

LATEST POST

CSTA Is Now Accepting Nominations for Board Members

Posted: Friday, November 17th, 2017

Current, incoming, and outgoing CSTA Board of Directors at June 3, 2017 meeting.

Updated 7:25 pm, Nov. 17, 2017

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There are time and energy commitments, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interested in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

State Schools Chief Tom Torlakson Announces 2017 Finalists for Presidential Awards for Excellence in Mathematics and Science Teaching

Posted: Wednesday, September 20th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson today nominated eight exceptional secondary mathematics and science teachers as California finalists for the 2017 Presidential Awards for Excellence in Mathematics and Science Teaching (PAEMST).

“These teachers are dedicated and accomplished individuals whose innovative teaching styles prepare our students for 21st century careers and college and develop them into the designers and inventors of the future,” Torlakson said. “They rank among the finest in their profession and also serve as wonderful mentors and role models.”

The California Department of Education (CDE) partners annually with the California Science Teachers Association and the California Mathematics Council to recruit and select nominees for the PAEMST program—the highest recognition in the nation for a mathematics or science teacher. The Science Finalists will be recognized at the CSTA Awards Luncheon on Saturday, October 14, 2017. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Thriving in a Time of Change

Posted: Wednesday, September 13th, 2017

by Jill Grace

By the time this message is posted online, most schools across California will have been in session for at least a month (if not longer, and hat tip to that bunch!). Long enough to get a good sense of who the kids in your classroom are and to get into that groove and momentum of the daily flow of teaching. It’s also very likely that for many of you who weren’t a part of a large grant initiative or in a district that set wheels in motion sooner, this is the first year you will really try to shift instruction to align to the Next Generation Science Standards (NGSS). I’m not going to lie to you, it’s a challenging year – change is hard. Change is even harder when there’s not a playbook to go by.  But as someone who has had the very great privilege of walking alongside teachers going through that change for the past two years and being able to glimpse at what this looks like for different demographics across that state, there are three things I hope you will hold on to. These are things I have come to learn will overshadow the challenge: a growth mindset will get you far, one is a very powerful number, and it’s about the kids. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.

If You Are Not Teaching Science Then You Are Not Teaching Common Core

Posted: Thursday, August 31st, 2017

by Peter A’Hearn 

“Science and Social Studies can be taught for the last half hour of the day on Fridays”

– Elementary school principal

Anyone concerned with the teaching of science in elementary school is keenly aware of the problem of time. Kids need to learn to read, and learning to read takes time, nobody disputes that. So Common Core ELA can seem like the enemy of science. This was a big concern to me as I started looking at the curriculum that my district had adopted for Common Core ELA. I’ve been through those years where teachers are learning a new curriculum, and know first-hand how a new curriculum can become the focus of attention- sucking all the air out of the room. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.

Tools for Creating NGSS Standards Based Lessons

Posted: Tuesday, August 29th, 2017

by Elizabeth Cooke

Think back on your own experiences with learning science in school. Were you required to memorize disjointed facts without understanding the concepts?

Science Education Background

In the past, science education focused on rote memorization and learning disjointed ideas. Elementary and secondary students in today’s science classes are fortunate now that science instruction has shifted from students demonstrating what they know to students demonstrating how they are able to apply their knowledge. Science education that reflects the Next Generation Science Standards challenges students to conduct investigations. As students explore phenomena and discrepant events they engage in academic discourse guided by focus questions from their teachers or student generated questions of that arise from analyzing data and creating and revising models that explain natural phenomena. Learn More…

Written by Elizabeth Cooke

Elizabeth Cooke

Elizabeth Cooke teaches TK-5 science at Markham Elementary in the Oakland Unified School District, is an NGSS Early Implementer, and is CSTA’s Secretary.