May/June 2017 – Vol. 29 No. 7

Virtual Courseware: Web-Based Simulations for Promoting Inquiry-Based Teaching and Learning

Posted: Tuesday, January 3rd, 2012

by Paul Narguizian and Robert Desharnais

There is wide acceptance that inquiry-based curriculum programs have positive effects on cognitive achievement, process skills, and attitudes towards science. Science instructors seek engaging, effective, and inquiry-based activities that are convenient to implement in their classrooms. While the web provides a vast resource of declarative information (some of it multimedia), there are few places on the web where instructors can obtain effective inquiry-based tools for teaching science. The Virtual Courseware Project fulfills this need with interactive, web-based simulation activities that emphasize the methods of science for both life and earth science topics.

With Virtual Courseware, students learn by doing: making observations, proposing hypotheses, designing experiments, collecting and analyzing data generated by the software, and synthesizing and communicating results. The activities include an online assessment quiz that consists of randomized interactive questions. The students’ answers are graded automatically and stored in a database server, and a printable certificate of completion is issued for each student. The instructor can access student and class results, allowing them to quickly gauge how well the key concepts were understood. The simulations are designed to enhance traditional curricula and provide a supplement to experimental laboratory and field work.

As an example, the Drosophila activity allows students to simulate laboratory experiments where they breed fruit flies carrying visible mutations and analyze the offspring to determine the laws governing genetic inheritance. The paradigm for this activity is a “virtual lab bench” where students can order fly stocks carrying mutations, mate flies in an incubator, and view and count flies under a microscope. Experimental data are entered into a “lab bench computer” which is used for analysis. Data tables and images can be exported into a “laboratory notebook” and results from the notebook can be imported to create an on-line scientific report. This activity promotes inquiry-based learning and the scientific method because it allows students to propose hypotheses, design their own experiments, and collect and analyze data to test these hypotheses in an engaging virtual environment that mimics a laboratory setting.

Advertisement 

 

 

 

 

 

 

 

Virtual Courseware Offerings

The development of Virtual Courseware began in 1995 with the release of the genetics application Virtual FlyLab. With the support of a series of NSF awards, several additional applications were developed in the areas of biology and earth science. These have been organized into four application suites:

  • Virtual Courseware for Inquiry-Based Science Education consists of Drosophila, described above, and two other applications to be released soon: Natural Selection, which allows students investigate the evolution of traits by performing laboratory experiments involving water fleas, and Relative Dating, where students can pose and test hypotheses regarding the order of the geological events represented in a geological cross section.
  • Virtual Courseware for Earth and Environmental Sciences includes two groups of activities. (1) Earthquake consists of a java-based simulation on determining the travel times of seismic waves and a second simulation on locating the epicenter and Richter magnitude of an earthquake. Also available is a version called Terremoto that is completely in Spanish. (2) Global Warming consists of two simulations and several interactive tutorials. Energy Balance allows students to explore the factors that determine the temperature on the Earth’s surface, and Future Climate Change allows students to experimentally manipulate simulations of Earth’s climate. Seven tutorials accompany these activities: Albedo, Carbon Cycle, Greenhouse Gases, Greenhouse Effects, Hydological Cycle, Milankovitch Cycles, and Seasons on Earth.
  • Geology Labs On-Line has five interactive tutorials: (1) Virtual Earthquake for earthquake epicenter and magnitude determination, (2) Virtual Dating—Isochron for determining the ages of rock and minerals, (3) Virtual Dating—Radiocarbon for determining the ages of fossils and archeological artifacts, (4) Virtual River—Discharge for determining the flow and other properties of rivers, and (5) Virtual River—Flooding for determining the frequency of flooding.
  • Biology Labs On-Line is a collection of 12 web-based simulations for biology education: CardioLab, DemographyLab, EnzymeLab, EvolutionLab, FlyLab, HemoglobinLab, LeafLab, MitochondriaLab, PedigreeLab, PopEcoLab, PopGenLab, and TranslationLab. It is a commercial web site hosted by the academic publisher Benjamin Cummings and jointly owned by the CSU Center for Distributed Learning and the publisher. A site-license for any of the simulations costs $133 per year.

Pre/In-service Teacher Training for Noyce Scholars

The Chancellor’s Office of the California State University was awarded a grant from the NSF NSDL program titled “Building Locally, Linking Globally: Networking Micro-Communities of Noyce Scholars for Advancing Innovations and Improvement in Mathematics and Science Education.” The Virtual Courseware Project partnered with the Noyce-NSDL team to train Noyce Scholars in the use of Virtual Courseware. Several in-person and on-line workshops were held and training materials were developed which became part of the Noyce Teaching Commons. Workshops were presented at annual western regional meetings of the Noyce Scholars and the Virtual Courseware Project hosted a one day series of hands-on workshops for over 60 Noyce Scholars in the Southwest.

The partnership has been a win-win-win situation for everyone involved. The Noyce-NSDL leadership team added another high quality instructional tool into its portfolio of on-line resources. The Virtual Courseware Project disseminated its materials to science majors who are committed to teach in high need schools throughout the nation. Most importantly, in these times of tight budgets and burgeoning technology, Noyce Scholars have been introduced to free and effective on-line simulations which allow them to implement inquiry-based learning in their classrooms in a fun and tech-savvy way.

This is the second in a series of articles that highlight features of the Noyce-NSDL project.

The Virtual Courseware Project was funded by several grants from the National Science Foundation: DUE 94552428, DUE 9752603, DUE 9980719, ESI 0352529, and DUE 0735011.

Paul Narguizian is an associate professor of biology at California State University with expertise in science education.

Robert Desharnais is a professor of professor of biology at California State University, the director of the Virtual Courseware Project, and a member of CSTA.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

One Response

  1. Hi
    Is it possible to speak with someone ( a human about the inquiry based virtual science courseware- just a minute or two of your time. I am interested in the Drosophila mating one-

Leave a Reply

LATEST POST

Participate in Chemistry Education Research Study, Earn $500-800 Dollars!

Posted: Tuesday, May 9th, 2017

WestEd, a non-profit educational research agency, has been funded by the US Department of Education to test a new molecular modeling kit, Happy Atoms. Happy Atoms is an interactive chemistry learning experience that consists of a set of physical atoms that connect magnetically to form molecules, and an app that uses image recognition to identify the molecules that you create with the set. WestEd is conducting a study around the effectiveness of using Happy Atoms in the classroom, and we are looking for high school chemistry teachers in California to participate.

As part of the study, teachers will be randomly assigned to either the treatment group (who uses Happy Atoms) or the control group (who uses Happy Atoms at a later date). Teachers in the treatment group will be asked to use the Happy Atoms set in their classrooms for 5 lessons over the course of the fall 2017 semester. Students will complete pre- and post-assessments and surveys around their chemistry content knowledge and beliefs about learning chemistry. WestEd will provide access to all teacher materials, teacher training, and student materials needed to participate.

Participating teachers will receive a stipend of $500-800. You can read more information about the study here: https://www.surveymonkey.com/r/HappyAtoms

Please contact Rosanne Luu at rluu@wested.org or 650.381.6432 if you are interested in participating in this opportunity, or if you have any questions!

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

2018 Science Instructional Materials Adoption Reviewer Application

Posted: Monday, May 8th, 2017

The California Department of Education and State Board of Education are now accepting applications for reviewers for the 2018 Science Instructional Materials Adoption. The application deadline is 3:00 pm, July 21, 2017. The application is comprehensive, so don’t wait until the last minute to apply.

On Tuesday, May 9, 2017, State Superintendent Tom Torlakson forwarded this recruitment letter to county and district superintendents and charter school administrators.

Review panel members will evaluate instructional materials for use in kindergarten through grade eight, inclusive, that are aligned with the California Next Generation Science Content Standards for California Public Schools (CA NGSS). Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Lessons Learned from the NGSS Early Implementer Districts

Posted: Monday, May 8th, 2017

On March 31, 2017, Achieve released two documents examining some lessons learned from the California K-8 Early Implementation Initiative. The initiative began in August 2014 and was developed by the K-12 Alliance at WestEd, with close collaborative input on its design and objectives from the State Board of Education, the California Department of Education, and Achieve.

Eight (8) traditional school districts and two (2) charter management organizations were selected to participate in the initiative, becoming the first districts in California to implement the Next Generation Science Standards (NGSS). Those districts included Galt Joint Union Elementary, Kings Canyon Joint Unified, Lakeside Union, Oakland Unified, Palm Springs Unified, San Diego Unified, Tracy Joint Unified, Vista Unified, Aspire, and High Tech High.

To more closely examine some of the early successes and challenges experienced by the Early Implementer LEAs, Achieve interviewed nine of the ten participating districts and compiled that information into two resources, focusing primarily on professional learning and instructional materials. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Using Online Simulations to Support the NGSS in Middle School Classrooms

Posted: Monday, May 8th, 2017

by Lesley Gates, Loren Nikkel, and Kambria Eastham

Middle school teachers in Kings Canyon Unified School District (KCUSD), a CA NGSS K-8 Early Implementation Initiative district, have been diligently working on transitioning to the Next Generation Science Standards (NGSS) integrated model for middle school. This year, the teachers focused on building their own knowledge of the Science and Engineering Practices (SEPs). They have been gathering and sharing ideas at monthly collaborative meetings as to how to make sure their students are not just learning about science but that they are actually doing science in their classrooms. Students should be planning and carrying out investigations to gather data for analysis in order to construct explanations. This is best done through hands-on lab experiments. Experimental work is such an important part of the learning of science and education research shows that students learn better and retain more when they are active through inquiry, investigation, and application. A Framework for K-12 Science Education (2011) notes, “…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K-12 Science Education” (pg. 11).

Many middle school teachers in KCUSD are facing challenges as they begin implementing these student-driven, inquiry-based NGSS science experiences in their classrooms. First, many of the middle school classrooms at our K-8 school sites are not designed as science labs. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Celestial Highlights: May – July 2017

Posted: Monday, May 8th, 2017

May Through July 2017 with Web Resources for the Solar Eclipse of August 21, 2017

by Robert C. Victor. Twilight sky maps by Robert D. Miller. Graphs of planet rising and setting times by Jeffrey L. Hunt.

In spring and summer 2017, Jupiter is the most prominent “star” in the evening sky, and Venus, even brighter, rules the morning. By mid-June, Saturn rises at a convenient evening hour, allowing both giant planets to be viewed well in early evening until Jupiter sinks low in late September. The Moon is always a crescent in its monthly encounters with Venus, but is full whenever it appears near Jupiter or Saturn in the eastern evening sky opposite the Sun. (In 2017, Full Moon is near Jupiter in April, Saturn in June.) At intervals of 27-28 days thereafter, the Moon appears at a progressively earlier phase at each pairing with the outer planet until its final conjunction, with Moon a thin crescent, low in the west at dusk. You’ll see many beautiful events by just following the Moon’s wanderings at dusk and dawn in the three months leading up to the solar eclipse. Learn More…

Powered By DT Author Box

Written by Robert Victor

Robert Victor

Robert C. Victor was Staff Astronomer at Abrams Planetarium, Michigan State University. He is now retired and enjoys providing skywatching opportunities for school children in and around Palm Springs, CA. Robert is a member of CSTA.