November 2015 – Vol. 28 No. 3

Virtual Courseware: Web-Based Simulations for Promoting Inquiry-Based Teaching and Learning

Posted: Tuesday, January 3rd, 2012

by Paul Narguizian and Robert Desharnais

There is wide acceptance that inquiry-based curriculum programs have positive effects on cognitive achievement, process skills, and attitudes towards science. Science instructors seek engaging, effective, and inquiry-based activities that are convenient to implement in their classrooms. While the web provides a vast resource of declarative information (some of it multimedia), there are few places on the web where instructors can obtain effective inquiry-based tools for teaching science. The Virtual Courseware Project fulfills this need with interactive, web-based simulation activities that emphasize the methods of science for both life and earth science topics.

With Virtual Courseware, students learn by doing: making observations, proposing hypotheses, designing experiments, collecting and analyzing data generated by the software, and synthesizing and communicating results. The activities include an online assessment quiz that consists of randomized interactive questions. The students’ answers are graded automatically and stored in a database server, and a printable certificate of completion is issued for each student. The instructor can access student and class results, allowing them to quickly gauge how well the key concepts were understood. The simulations are designed to enhance traditional curricula and provide a supplement to experimental laboratory and field work.

As an example, the Drosophila activity allows students to simulate laboratory experiments where they breed fruit flies carrying visible mutations and analyze the offspring to determine the laws governing genetic inheritance. The paradigm for this activity is a “virtual lab bench” where students can order fly stocks carrying mutations, mate flies in an incubator, and view and count flies under a microscope. Experimental data are entered into a “lab bench computer” which is used for analysis. Data tables and images can be exported into a “laboratory notebook” and results from the notebook can be imported to create an on-line scientific report. This activity promotes inquiry-based learning and the scientific method because it allows students to propose hypotheses, design their own experiments, and collect and analyze data to test these hypotheses in an engaging virtual environment that mimics a laboratory setting.









Virtual Courseware Offerings

The development of Virtual Courseware began in 1995 with the release of the genetics application Virtual FlyLab. With the support of a series of NSF awards, several additional applications were developed in the areas of biology and earth science. These have been organized into four application suites:

  • Virtual Courseware for Inquiry-Based Science Education consists of Drosophila, described above, and two other applications to be released soon: Natural Selection, which allows students investigate the evolution of traits by performing laboratory experiments involving water fleas, and Relative Dating, where students can pose and test hypotheses regarding the order of the geological events represented in a geological cross section.
  • Virtual Courseware for Earth and Environmental Sciences includes two groups of activities. (1) Earthquake consists of a java-based simulation on determining the travel times of seismic waves and a second simulation on locating the epicenter and Richter magnitude of an earthquake. Also available is a version called Terremoto that is completely in Spanish. (2) Global Warming consists of two simulations and several interactive tutorials. Energy Balance allows students to explore the factors that determine the temperature on the Earth’s surface, and Future Climate Change allows students to experimentally manipulate simulations of Earth’s climate. Seven tutorials accompany these activities: Albedo, Carbon Cycle, Greenhouse Gases, Greenhouse Effects, Hydological Cycle, Milankovitch Cycles, and Seasons on Earth.
  • Geology Labs On-Line has five interactive tutorials: (1) Virtual Earthquake for earthquake epicenter and magnitude determination, (2) Virtual Dating—Isochron for determining the ages of rock and minerals, (3) Virtual Dating—Radiocarbon for determining the ages of fossils and archeological artifacts, (4) Virtual River—Discharge for determining the flow and other properties of rivers, and (5) Virtual River—Flooding for determining the frequency of flooding.
  • Biology Labs On-Line is a collection of 12 web-based simulations for biology education: CardioLab, DemographyLab, EnzymeLab, EvolutionLab, FlyLab, HemoglobinLab, LeafLab, MitochondriaLab, PedigreeLab, PopEcoLab, PopGenLab, and TranslationLab. It is a commercial web site hosted by the academic publisher Benjamin Cummings and jointly owned by the CSU Center for Distributed Learning and the publisher. A site-license for any of the simulations costs $133 per year.

Pre/In-service Teacher Training for Noyce Scholars

The Chancellor’s Office of the California State University was awarded a grant from the NSF NSDL program titled “Building Locally, Linking Globally: Networking Micro-Communities of Noyce Scholars for Advancing Innovations and Improvement in Mathematics and Science Education.” The Virtual Courseware Project partnered with the Noyce-NSDL team to train Noyce Scholars in the use of Virtual Courseware. Several in-person and on-line workshops were held and training materials were developed which became part of the Noyce Teaching Commons. Workshops were presented at annual western regional meetings of the Noyce Scholars and the Virtual Courseware Project hosted a one day series of hands-on workshops for over 60 Noyce Scholars in the Southwest.

The partnership has been a win-win-win situation for everyone involved. The Noyce-NSDL leadership team added another high quality instructional tool into its portfolio of on-line resources. The Virtual Courseware Project disseminated its materials to science majors who are committed to teach in high need schools throughout the nation. Most importantly, in these times of tight budgets and burgeoning technology, Noyce Scholars have been introduced to free and effective on-line simulations which allow them to implement inquiry-based learning in their classrooms in a fun and tech-savvy way.

This is the second in a series of articles that highlight features of the Noyce-NSDL project.

The Virtual Courseware Project was funded by several grants from the National Science Foundation: DUE 94552428, DUE 9752603, DUE 9980719, ESI 0352529, and DUE 0735011.

Paul Narguizian is an associate professor of biology at California State University with expertise in science education.

Robert Desharnais is a professor of professor of biology at California State University, the director of the Virtual Courseware Project, and a member of CSTA.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Leave a Reply


Your Chance to Review the California Science Curriculum Framework Is Here

Posted: Tuesday, November 17th, 2015

by Laura Henriques

The California Science Curriculum Framework & Evaluation Criteria document is now ready for its first 60 Day Public Feedback period.! This is a critical process for the review and vetting of the document. Anyone from around the state is invited to read the document and provide feedback. CSTA encourages its members to participate in this process.

Just to be clear, the California Curriculum Framework is different from the NRC Framework for K-12 Science Education. The NRC Framework is the document which guided the development of Next Generation Science Standards. The California Curriculum Framework is the document which will help us make sense of those standards in our classrooms. Learn More…

Written by Laura Henriques

Laura Henriques

Laura Henriques is a professor of science education at CSU Long Beach and past-president of CSTA. She serves as chair of CSTA’s Nominating Committee and is a co-chair of the NGSS Committee.

Call for Nominations for the 2016-2018 CSTA Board of Directors

Posted: Thursday, November 12th, 2015

It’s that time of year when CSTA is looking for dedicated and qualified persons to fill the upcoming vacancies on its Board of Directors. This opportunity allows you to help shape the policy and determine the path that the Board will take in the new year. There is a time and energy commitment, but that is far outweighed by the personal satisfaction of knowing that you are an integral part of an outstanding professional educational organization, dedicated to the support and guidance of California’s science teachers. You will also have the opportunity to help CSTA review and support legislation that benefits good science teaching and teachers.

Right now is an exciting time to be involved at the state level in the California Science Teachers Association. The CSTA Board of Directors is currently involved in implementing the Next Generations Science Standards and its strategic plan. If you are interesting in serving on the CSTA Board of Directors, now is the time to submit your name for consideration. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Middle School Madness Part 2: Integrated Science Versus Coordinated Science

Posted: Thursday, November 12th, 2015

by Robert Sherriff

In my last article, I compared the integrated versus discipline-specific models of teaching science in middle school. In this article, I seek to dispel some misconceptions and refine the comparison of an integrated science program with a coordinated science program.

This past summer, I was honored to participate in presenting at the two Northern California NGSS Early Implementation Institutes. I was part of a science content cadre to which I brought both my 25 years of middle school teaching experience and my knowledge of NGSS (I was on the State Science Expert Panel and was Co-chair of the Curriculum Framework Criteria Committee – CFCC). Other members of the cadre included Bob Rumer, an innovative engineering professor who helped us incorporate the Engineering Standards, and an outstanding high school science teacher, Lesley Gates, who helped provide activities and pedagogy. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

The Tree Room: A New Online Resource for Teaching Evolutionary Relationships

Posted: Thursday, November 12th, 2015

by Anna Thanukos, Teresa MacDonald, David Heiser, and Robert Ross

Understanding evolutionary trees is important for students because trees visually represent the idea that all life is genealogically linked. This powerful idea, tied to Next Generation Science Standards MS-LS4-2 and HS-LS4-1, is one of those most fundamental concepts that biological evolution offers to explain the biological world. The implication is that any set of species, no matter how distantly related, share common ancestors at some point in evolutionary history. Evolutionary trees are an efficient way to communicate that idea. It turns out, however, that evolutionary trees are not quite as straightforward to interpret as they may at first appear — so where can a teacher turn for a user-friendly introduction to their use in the classroom? Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy:

Ship That Chip: Teaching Engineering by Using Snacks

Posted: Thursday, November 12th, 2015

by Joanne Michael

When a new school year begins, almost every student (and teacher) is excited, motivated, and ready to work hard. Almost as quickly as it began, however, the “newness” of the school year wears off, and the students are in need of something new to recharge them. At the same time, teachers attempting to implement NGSS (even if not in full implementation mode) are getting tired, and may need a pick-me-up of their own. Enter the “Ship the Chip” challenge! Learn More…

Written by Joanne Michael

Joanne Michael is the K-5 science specialist at Meadows Elementary in Manhattan Beach, CA, and CSTA’s intermediate grades 3-5) Director.