August 2016 – Vol. 28 No. 12

What Makes for an Effective Science Demonstration?

Posted: Saturday, September 1st, 2012

by Laura Henriques

You are standing at the front of the classroom, poised behind some apparatus. Students are watching expectantly. Something exciting is about to happen, but what? The tension in the room is palpable as students eagerly await the moment when you make the magic of science come alive. You make a motion to start the demo and then pause, pulling the students along with you to further build the anticipation. When you do the demonstration and it works you have their attention, you’ve piqued their interest and they are ready to learn.

This happens in your classroom every day, right? It could! Science demonstrations have the power to engage our students in a variety of ways. The ways in which we use our demonstrations make all the difference in the world.

Demonstrations can serve a variety of purposes. I had a friend who started every single day with a quick demo. He did them only once, and right as the bell rang. Students were required to write a brief description of what they saw and what they thought was going on. This was his daily warm-up. It was great for getting kids to class on time as he only did the demonstration a single time – if you were late you missed it and you weren’t able to get points for the warm-up without having seen the demo.

The same demonstration can be used multiple times for different purposes. At the start of a class or lecture, they can serve as a common experience to which you refer back to during class. On the other hand, if used at the end of an instructional segment they can illustrate a concept just explained. During the middle of instruction a demonstration can be used to review content or introduce new ideas. They can prompt lively discussion or be the prompt for a quick write.  Some may choose to combine these approaches, for example, doing a demo at the start of class to pique interest and provide a shared experience, then repeating it again after some learning has taken place so that students can apply what they have learned as they try to make sense what happened. Demonstrations can also be motivational, giving students a reason to pay attention, read and learn. Discrepant events are really good for that purpose as they captivate student interest because of their unexpected results.

More often than not, we shouldn’t spend too much time explaining during the demonstration. You will have time after the demonstration to ask questions and teach content. Silence is golden for some demonstrations. It builds the drama and focuses attention on the phenomena. Sometimes we do demonstrations to teach a particular skill. In this situation you will want to explain while you demonstrate.

Here are some tips to consider when doing science demonstrations.

  1. Prior Practice Prevents Poor Performance. A teaching buddy of mine used to drill into me these “5Ps of science demos” (and labs). We have to try them ahead of time. Know how it works, be comfortable with it and be aware of the tricks needed to make it work well. Demonstrations do not always work the first time we do them. Being comfortable with the materials enables you to be confident and comfortable in front your class. If it does not work as expected during class you’ll feel better about setting it up and trying again. (As an aside, don’t spend too much class time trying to make the demo work if it has failed a few times.)
  2. Don’t tell us what is going to happen before you do the demo. If you take away the element of surprise by telling us exactly what to look for and what to expect (and why) then you don’t really need to take the time to do the demonstration. Consider doing the demo without any explanation at all as a way to engage the class and pique their curiosity. This creates a teachable moment – students have seen something and now they want to know how and why it works. After the explanation you can do the demo again, this time talking about what is going on while performing the demo.
  3. Make sure people can see! You won’t want to go to all the trouble of putting together a demonstration if your students can’t see it well. Think about how the demo will look from the back of the classroom. Is it big enough? High enough off the lab table so that all can see? Does it need a solid background to be easily seen? Perhaps you need to use a document camera to project the demo so all can see it, or you need to raise the entire demonstration by putting it on a pile of books or a box so kids in the back can see. Maybe it would be more visible if you put it on the overhead and shined light through it or projected it. If you are doing something which relies on color changes it won’t help if you are wearing a multicolored shirt, maybe you need to hold up a piece of white paper behind the apparatus.
  4. Consider getting students involved in the demonstration. Some demos need an assistant or a shill. Enlist the help of your students! Some of the demos are easily replicated with common materials. Consider having students try the demonstrations at home, to teach family members. Not only does this get the kids talking about science with their families, it helps them verbalize what they know as they are explaining the science. Teaching the content helps them learn the content.
  5. Consider recording your demonstration. Some demonstrations are very time consuming to set-up. Some take place really quickly. Some are a bit persnickety and don’t always “work” exactly as planned. For those demonstrations it can be helpful to record the demo and show it in class. This method allows you to watch the demonstration in slow motion, pause at key points (to ask questions or reiterate key points), and you can watch the demo over and over without having to set up the equipment again.
  6. Showmanship matters! Not all of us are comfortable being goofy in class, but doing so can make a big difference. Compare these videos of the same demonstration. While we aren’t as funny or talented as Dom Deluise, we can all ham it up a little to build tension and build interest. The demo is exciting all by itself, but Dom Deluise gets the viewer (student) more involved and invested by pretending to be nervous about the outcome.

Mrs. Dowdle’s Inertia Eggs   (http://www.youtube.com/watch?v=B20GRM64JU8)

Dom Deluise on Johnny Carson (http://www.staged.com/video?v=4Vkc)

Doing demonstrations in your science classroom does not take the place of doing labs or activities, but they can greatly enhance your instruction. Try some and see how they work. If you find a collection that work well, consider sharing them with your colleagues at the CSTA Conference in 2013 or via an article in eCCS! I encourage you to share your favorite demo via the “comment” box at the end of this article so we can all learn from each other.

An Invitation

For those of you who teach physics or physical science in the LA area, California State University, Long Beach hosts a monthly Physics Demo Day. The 2nd Thursday of each month from 4:30-5:30 p.m., we gather to share our favorite physics demonstrations. Topics vary each time as we move through the physics curriculum. To find out more and to RSVP for parking visit PhysicsAtTheBeach.com.

Written by Laura Henriques

Laura Henriques

Laura Henriques is a professor of science education at CSU Long Beach and past-president of CSTA. She serves as chair of CSTA’s Nominating Committee and is a co-chair of the NGSS Committee.

Leave a Reply

LATEST POST

Are You Prepared to Participate in the Discussions?

Posted: Saturday, August 20th, 2016

by Lisa Hegdahl

I recently found myself a participant in two separate conversations regarding topics of which all California teachers of Science should be knowledgeable.  One was in regards to the current status of the California Standards Tests (CSTs) and the other was in regards to High School course structures in light of the new California assessment for Science.  As many of us will attend district, school, and department meetings in preparation for the new school year, updating our knowledge about the most recent decisions that will affect California Science education will be time well spent. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

New Conference Website, 700+ Registrations, and Featured Speakers Galore

Posted: Saturday, August 20th, 2016

by Jessica Sawko

It is with great excitement that I began this post…700+ registrations for the 2016 California Science Education Conference, and we are not even at the end of August! We have not seen conference numbers this high since 2007, so I can tell already that this is going to be a big conference. I can understand why as well. Not only is implementation of California’s new science standards starting to receive some attention at schools and districts all over the state – but this year’s 2016 conference has undergone a transformation that is sure to provide attendees with the content, experience, resources, connections, and information they are looking for. In order to help you navigate all of the wonderful components of the 2016 California Science Education Conference CSTA has launched a brand new conference website.

With this many advance registrations, ticketed events are starting to fill. So if you haven’t already registered – I recommend you do so today. Not sure your principal or supervisor will approve or fund your participation? CSTA has developed a letter targeting leaders/administrators as well as complied useful information on how to fund your conference participation and a conference expense planner. You can find all three onlineLearn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Science & Engineering Practices for Science Fairs Infographic

Posted: Friday, August 19th, 2016

Infographic

Click to download a PDF of the infographic

The non-profit Synopsys Silicon Valley Science & Technology Outreach Foundation enables students and teachers developing science projects at more than 750 California schools each year. As teachers process methods to implement Next Generation Science Standards, we suggest that hands-on science projects and science fair competitions are the perfect vehicles for implementing NGSS. Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Sensemaking Notebooks: Making Thinking Visible for Both Students and Teachers!

Posted: Friday, August 19th, 2016

by Karen Cerwin

“Students can’t yet write independently without basic sentence frames.  Their thoughts are usually bigger than what they can put on paper.” – Kindergarten Teacher

This quote works for everyone; our thoughts are usually bigger than what anyone can put on paper! Yet, our job as educators is to help students learn to communicate their thinking in meaningful ways. One strategy is to use science notebooks in the classroom in a way that aligns with how scientists use their notebooks in their daily work.

Scientists use notebooks as a “thinking journal” in which they record observations, and thoughts about a phenomenon they are investigating. They propose ideas, research how others have thought about the phenomenon, do original investigations, edit and refine their thinking as they gather more data, generate more questions for further study. Scientist notebooks are living documents that reflect the author’s thinking.  Thus their notebooks are unique and individual to that scientist’s ideas. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the NGSS Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

Why Students with Special Needs Need Science in Your Classroom

Posted: Friday, August 19th, 2016

by Scott Campbell

I am a resource-level special education teacher. Like you, I teach students. As in most classrooms, my students’ skill levels run the gamut from very low to approaching grade level. Unlike you, I do not specifically teach science. Students in my resource program do not qualify for services in science. They qualify for services in the specific areas of reading, writing, math, listening, and speaking. They are pulled out of the regular education classroom for those services. I do my best to schedule these services so there is minimal disruption to you, but the number of students to be seen and the number of minutes available to me limits me. I want us to be partners in the education of our students and I need you to know that my students need to have science in your classroom. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.