May/June 2017 – Vol. 29 No. 7

What We Have Here is a Failure to Communicate: Evaluating Negotiation in an Elementary Science Classroom

Posted: Thursday, April 3rd, 2014

by Mason Kuhn

Engaging students in negotiation with their peers is considered a central motivation for recent national policy recommendations (National Research Council, 2011) and has been a focus of much scholarship in science education (e.g. Bergland and Reiser, 2009 & Hand, 2008). In the Next Generation Science Standards under the heading “Science and Engineering Practices,” the term “Engaging in Argument From Evidence” appears in almost every standard. However, most literature on negotiation focuses on theory, where little focuses on the topic of negotiation as related to science teaching and learning. The purpose of this paper is to present an approach to enhancing authentic student negotiation in a 4th grade classroom.  The theoretical framework used by the teacher in this paper is the Science Writing Heuristic (SWH). The SWH is a writing-to-learn approach (Keys et al,1999) that helps a science classroom community to embed science negotiation as a core component of their inquiry experience.

Setting the Stage for Success

Many times the terms “argument” and “negotiation” are used as synonyms, but when you examine them more closely they are quite different. The meaning of the word argument can be confusing to students, especially younger children, because many times it carries a negative implication (Schoering & Hand, 2013). In an argument the goal is to win and opposing views are dismissed in fear that the other person will gain ground and be the victor. Negotiation does not have these negative connotations; in a negotiation people work together to shape and improve ideas (Schoering & Hand, 2013). An argument can be thought of as a divisive activity where a negotiation can be thought of as a collaborative event. It is important to differentiate between scientific negotiation and typical arguing that goes on between people, which is seldom based on empirical evidence and usually involves opinions, beliefs and emotion. The purpose of a dispute is for one person’s point of view to prevail over another’s. In scientific negotiation, however, explanations are generated, verified, communicated, debated, and modified. So, a critical first step in creating a classroom climate contusive to negotiation is to ensure to your students that all initial thoughts are valid and welcome.

Negotiation in the Classroom

According to the National Research Council (2009): “Students come to the classroom with preconceptions about how the world works. If their understanding is not engaged, they may fail grasp new concepts and information presented in the classroom.” (p.2) Long gone is the belief that students come to the classroom as an empty vessel waiting patiently to be filled with knowledge by the teacher. But what do teachers do with these preconceptions that the students bring? Many teachers elect to have their students fill out a KWL chart, then simply move on to the next step in their unit plan. The SWH approach differs because it asks students to do something with those preconceptions. Typically, teachers prepare an activity to elicit big ideas and concepts from their students. There are a variety of different activities that could be used to start a unit (i.e. thought experiments, journal writing, mini-activities, PWIM, etc.). The type of activity is not important; the critical component of the activity is that it will expose the students’ ideas. An example I recently used was a mini-activity to observe the students’ conceptual understanding of Next Generation Science Standard 4-PS4-2.”Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.” Students were asked to get in pairs and complete the “Shrinking Pupil” activity.

The students took turns putting a bag over their head and observing their partner as their pupil shrank as it adjusted to the light of the room.

The students took turns putting a bag over their head and observing their partner as their pupil shrank as it adjusted to the light of the room.

Each student filled out a worksheet asking them to try to explain what happened during the experiment, and how they believe the interaction between eye, light, and object are related. The teacher’s role during this part of the lesson was not to provide the correct answer; instead, after individual writing and small group discussions, the teacher asked students to find others in the classroom who had similar beliefs. Once the students found some “conceptual friends” the teacher set the stage for student-to-student negotiation.  Interestingly, in this experiment there was an almost 50/50 split of students who held the correct conception (light reflects off an object and then enters the eye) and a misconception (light enters the eye and then projects out to see the object). The students were then given a day to research their claims using a worksheet and access to the computer lab to search for evidence.

During the “Negotiation Day” this student pointed out that if the eye projected out light (like the group with the misconception believed) you would be able to see a small piece of paper with a letter written on it at the end of an enclosed tube. She even took apart a flashlight to prove her point. These moments of inquiry would not happen in a lecture-based classroom. This example served two roles: It helped the student negotiating for the correct concept because she took her prior knowledge and applied it in an authentic, new setting; and it helped the students who came in with a misconception because they saw a real example of how their conception does not follow the law of physics.

During the “Negotiation Day” this student pointed out that if the eye projected out light (like the group with the misconception believed) you would be able to see a small piece of paper with a letter written on it at the end of an enclosed tube. She even took apart a flashlight to prove her point. These moments of inquiry would not happen in a lecture-based classroom. This example served two roles: It helped the student negotiating for the correct concept because she took her prior knowledge and applied it in an authentic, new setting; and it helped the students who came in with a misconception because they saw a real example of how their conception does not follow the law of physics.

Someone not familiar with this approach of engaging learners may ask: “Why don’t you just tell the students which concept is correct?” Existing views in philosophy of science propose a more effective model of conceptual change. Posner et al. (1982) view conceptual change as the process whereby a learner’s existing beliefs change over the course of that person’s experience with established concepts. If the learner is adding new knowledge to the framework that is not radical but rather extends or strengthens the framework, then it is considered to be assimilated into the existing framework (Norton-Meier, Hand, Hockenberry, & Wise, 2008).  Accommodation is a process where students must replace or reorganize their central concepts (Posner et al., 1982). Once prior knowledge conflicts with existing conceptions, and then it cannot become credible or useful until the learner becomes dissatisfied with their old conceptions (Hewson, 1992). In the classroom example the two groups could be described as a group going through the process of assimilation and a group in need of accommodation. Simply telling the group in need of accommodation that they are wrong will not raise the new concept to a status that holds more weight than their current belief. In my experience having students research their claim and negotiating with their peers has been an effective way to promote accommodation. The teacher can facilitate the research day in a number of ways, for example, schedule a trip to the computer lab to search the internet, provide the students with a packet of information, or pick out books that highlight the correct concepts.  A “Check with the Experts” page is used in the experiment.
The public negotiation has the potential to raise the status of the new concept for the accommodation group and help the assimilation group generalize their understanding of the concept because it 1) Gives the students ownership of their learning 2) Lets them act like actual scientists (backing claims with evidence) 3) Negotiation with peers makes the outcome of the argument more plausible than simply being told by the teacher (Kuhn, 2010). The entire lesson plan for this unit and many others aligned to the Next Generation Science Standards can be found at www.waverlyshellrockswh.weebly.com.

Sample of a five day progression for the described unit (assuming approximately one hour for each lesson).

Sample of a five day progression for the described unit (assuming approximately one hour for each lesson).

References

Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.

Hand, B. (2008). Introducing the science writing heuristic approach. In B. Hand (Ed.), Science inquiry, argument and language: A case for the science writing heuristic. Rotterdam, The Netherlands: Sense Publishers.

Hewson. P. W. (1992). Conceptual change in science teaching and teacher education. Paper presented at a meeting on “Research and Curriculum Development in Science Teaching,” under the auspices of the National Center for Educational Research, Documentation, and Assessment, Ministry for Education and Science, Madrid, Spain.

Keys, C., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary school. Journal of Research in Science Teaching, 36(10), 1065 – 1084.

Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5),1–15.

Posner, G., Strike, K. A., Hewson, P.W., & Gertzog, W.A. (1982) Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education. 66(2), 211-27.

Schoering, E. & Hand, B. (2013). Using Language Positively. How to Encourage Negotiation in the Classroom. Science and Children. 50 (9) p. 52-57.

National Research Council. (2009). How People Learn: Brain, Mind, Experience, and School. Commission on Behavioral and Social Sciences and Education National Research Council. Washington, DC: National Academies Press.

National Research Council. (2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press.

Next Generation Science Standards (2013). For States, By States. Washington, DC: The National Academies Press.

Norton-Meier, L., Hand, B., Hockenberry, L., & Wise, K. (2008). Questions, claims, and evidence: The important place of argument in children’s science writing. National Science Teacher Association Press.

Mason Kuhn is a 4th Grade Teacher at Shell Rock Elementary. Shell Rock, Iowa and is an EdD. Student at the University of Northern Iowa

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Leave a Reply

LATEST POST

CSTA Annual Conference Early Bird Rates End July 14

Posted: Wednesday, July 12th, 2017

by Jessica Sawko

Teachers engaged in workshop activity

Teachers engaging in hands-on learning during a workshop at the 2016 CSTA conference.

Don’t miss your chance to register at the early bird rate for the 2017 CSTA Conference – the early-bird rate closes July 14. Need ideas on how to secure funding for your participation? Visit our website for suggestions, a budget planning tool, and downloadable justification letter to share with your admin. Want to take advantage of the early rate – but know your district will pay eventually? Register online today and CSTA will reimburse you when we receive payment from your district/employer. (For more information on how that works contact Zi Stair in the office for details – 916-979-7004 or zi@cascience.org.)

New Information Now Available On-line:

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Goodbye Outgoing and Welcome Incoming CSTA Board Members

Posted: Wednesday, July 12th, 2017

Jill Grace

Jill Grace, CSTA President, 2017-2019

On July 1, 2017 five CSTA members concluded their service and four new board members joined the ranks of the CSTA Board of Directors. CSTA is so grateful for all the volunteer board of directors who contribute hours upon hours of time and energy to advance the work of the association. At the June 3 board meeting, CSTA was able to say goodbye to the outgoing board members and welcome the incoming members.

This new year also brings with it a new president for CSTA. As of July 1, 2017 Jill Grace is the president of the California Science Teachers Association. Jill is a graduate of California State University, Long Beach, a former middle school science teacher, and is currently a Regional Director with the K-12 Alliance @ WestEd where she works with California NGSS K-8 Early Implementation Initiative districts and charter networks in the San Diego area.

Outgoing Board Members

  • Laura Henriques (President-Elect: 2011 – 2013, President: 2013 – 2015, Past President: 2015 – 2017)
  • Valerie Joyner (Region 1 Director: 2009 – 2013, Primary Director: 2013 – 2017)
  • Mary Whaley (Informal Science Education Director: 2013 – 2017)
  • Sue Campbell (Middle School/Jr. High Director: 2015 – 2017)
  • Marcus Tessier (2-Year College Director: 2015 – 2017)

Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Finding My Student’s Motivation of Learning Through Engineering Tasks

Posted: Wednesday, July 12th, 2017

by Huda Ali Gubary and Susheela Nath

It’s 8:02 and the bell rings. My students’ walk in and pick up an entry ticket based on yesterday’s lesson and homework. My countdown starts for students to begin…3, 2, 1. Ten students are on task and diligently completing the work, twenty are off task with behaviors ranging from talking up a storm with their neighbors to silently staring off into space. This was the start of my classes, more often than not. My students rarely showed the enthusiasm for a class that I had eagerly prepared for. I spent so much time searching for ways to get my students excited about the concepts they were learning. I wanted them to feel a connection to the lessons and come into my class motivated about what they were going to learn next. I would ask myself how I could make my class memorable where the kids were in the driver’s seat of learning. Incorporating engineering made this possible. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

State Schools Chief Tom Torlakson Unveils Updated Recommended Literature List

Posted: Wednesday, July 12th, 2017

SACRAMENTO—State Superintendent of Public Instruction Tom Torlakson unveiled an addition of 285 award-winning titles to the Recommended Literature: Prekindergarten Through Grade Twelve list.

“The books our students read help broaden their perspectives, enhance their knowledge, and fire their imaginations,” Torlakson said. “The addition of these award-winning titles represents the state’s continued commitment to the interests and engagement of California’s young readers.”

The Recommended Literature: Prekindergarten Through Grade Twelve list is a collection of more than 8,000 titles of recommended reading for children and adolescents. Reflecting contemporary and classic titles, including California authors, this online list provides an exciting range of literature that students should be reading at school and for pleasure. Works include fiction, nonfiction, poetry, and drama to provide for a variety of tastes, interests, and abilities. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Teaching Science in the Time of Alternative Facts – Why NGSS Can Help (somewhat)

Posted: Wednesday, July 12th, 2017

by Peter A’Hearn

The father of one of my students gave me a book: In the Beginning: Compelling Evidence for Creation and the Flood by Walt Brown, Ph. D. He had heard that I was teaching Plate Tectonics and wanted me to consider another perspective. The book offered the idea that the evidence for plate tectonics could be better understood if we considered the idea that beneath the continent of Pangaea was a huge underground layer of water that suddenly burst forth from a rift between the now continents of Africa and South America. The waters shot up and the continents hydroplaned apart on the water layer to their current positions. The force of the movement pushed up great mountain ranges which are still settling to this day, resulting in earthquakes along the margins of continents. This had happened about 6,000 years ago and created a great worldwide flood. Learn More…

Powered By DT Author Box

Written by Peter AHearn

Peter AHearn

Peter A’Hearn is the Region 4 Director for CSTA.