January/February 2018 – Vol. 31 No. 2

What We Have Here is a Failure to Communicate: Evaluating Negotiation in an Elementary Science Classroom

Posted: Thursday, April 3rd, 2014

by Mason Kuhn

Engaging students in negotiation with their peers is considered a central motivation for recent national policy recommendations (National Research Council, 2011) and has been a focus of much scholarship in science education (e.g. Bergland and Reiser, 2009 & Hand, 2008). In the Next Generation Science Standards under the heading “Science and Engineering Practices,” the term “Engaging in Argument From Evidence” appears in almost every standard. However, most literature on negotiation focuses on theory, where little focuses on the topic of negotiation as related to science teaching and learning. The purpose of this paper is to present an approach to enhancing authentic student negotiation in a 4th grade classroom.  The theoretical framework used by the teacher in this paper is the Science Writing Heuristic (SWH). The SWH is a writing-to-learn approach (Keys et al,1999) that helps a science classroom community to embed science negotiation as a core component of their inquiry experience.

Setting the Stage for Success

Many times the terms “argument” and “negotiation” are used as synonyms, but when you examine them more closely they are quite different. The meaning of the word argument can be confusing to students, especially younger children, because many times it carries a negative implication (Schoering & Hand, 2013). In an argument the goal is to win and opposing views are dismissed in fear that the other person will gain ground and be the victor. Negotiation does not have these negative connotations; in a negotiation people work together to shape and improve ideas (Schoering & Hand, 2013). An argument can be thought of as a divisive activity where a negotiation can be thought of as a collaborative event. It is important to differentiate between scientific negotiation and typical arguing that goes on between people, which is seldom based on empirical evidence and usually involves opinions, beliefs and emotion. The purpose of a dispute is for one person’s point of view to prevail over another’s. In scientific negotiation, however, explanations are generated, verified, communicated, debated, and modified. So, a critical first step in creating a classroom climate contusive to negotiation is to ensure to your students that all initial thoughts are valid and welcome.

Negotiation in the Classroom

According to the National Research Council (2009): “Students come to the classroom with preconceptions about how the world works. If their understanding is not engaged, they may fail grasp new concepts and information presented in the classroom.” (p.2) Long gone is the belief that students come to the classroom as an empty vessel waiting patiently to be filled with knowledge by the teacher. But what do teachers do with these preconceptions that the students bring? Many teachers elect to have their students fill out a KWL chart, then simply move on to the next step in their unit plan. The SWH approach differs because it asks students to do something with those preconceptions. Typically, teachers prepare an activity to elicit big ideas and concepts from their students. There are a variety of different activities that could be used to start a unit (i.e. thought experiments, journal writing, mini-activities, PWIM, etc.). The type of activity is not important; the critical component of the activity is that it will expose the students’ ideas. An example I recently used was a mini-activity to observe the students’ conceptual understanding of Next Generation Science Standard 4-PS4-2.”Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.” Students were asked to get in pairs and complete the “Shrinking Pupil” activity.

The students took turns putting a bag over their head and observing their partner as their pupil shrank as it adjusted to the light of the room.

The students took turns putting a bag over their head and observing their partner as their pupil shrank as it adjusted to the light of the room.

Each student filled out a worksheet asking them to try to explain what happened during the experiment, and how they believe the interaction between eye, light, and object are related. The teacher’s role during this part of the lesson was not to provide the correct answer; instead, after individual writing and small group discussions, the teacher asked students to find others in the classroom who had similar beliefs. Once the students found some “conceptual friends” the teacher set the stage for student-to-student negotiation.  Interestingly, in this experiment there was an almost 50/50 split of students who held the correct conception (light reflects off an object and then enters the eye) and a misconception (light enters the eye and then projects out to see the object). The students were then given a day to research their claims using a worksheet and access to the computer lab to search for evidence.

During the “Negotiation Day” this student pointed out that if the eye projected out light (like the group with the misconception believed) you would be able to see a small piece of paper with a letter written on it at the end of an enclosed tube. She even took apart a flashlight to prove her point. These moments of inquiry would not happen in a lecture-based classroom. This example served two roles: It helped the student negotiating for the correct concept because she took her prior knowledge and applied it in an authentic, new setting; and it helped the students who came in with a misconception because they saw a real example of how their conception does not follow the law of physics.

During the “Negotiation Day” this student pointed out that if the eye projected out light (like the group with the misconception believed) you would be able to see a small piece of paper with a letter written on it at the end of an enclosed tube. She even took apart a flashlight to prove her point. These moments of inquiry would not happen in a lecture-based classroom. This example served two roles: It helped the student negotiating for the correct concept because she took her prior knowledge and applied it in an authentic, new setting; and it helped the students who came in with a misconception because they saw a real example of how their conception does not follow the law of physics.

Someone not familiar with this approach of engaging learners may ask: “Why don’t you just tell the students which concept is correct?” Existing views in philosophy of science propose a more effective model of conceptual change. Posner et al. (1982) view conceptual change as the process whereby a learner’s existing beliefs change over the course of that person’s experience with established concepts. If the learner is adding new knowledge to the framework that is not radical but rather extends or strengthens the framework, then it is considered to be assimilated into the existing framework (Norton-Meier, Hand, Hockenberry, & Wise, 2008).  Accommodation is a process where students must replace or reorganize their central concepts (Posner et al., 1982). Once prior knowledge conflicts with existing conceptions, and then it cannot become credible or useful until the learner becomes dissatisfied with their old conceptions (Hewson, 1992). In the classroom example the two groups could be described as a group going through the process of assimilation and a group in need of accommodation. Simply telling the group in need of accommodation that they are wrong will not raise the new concept to a status that holds more weight than their current belief. In my experience having students research their claim and negotiating with their peers has been an effective way to promote accommodation. The teacher can facilitate the research day in a number of ways, for example, schedule a trip to the computer lab to search the internet, provide the students with a packet of information, or pick out books that highlight the correct concepts.  A “Check with the Experts” page is used in the experiment.
The public negotiation has the potential to raise the status of the new concept for the accommodation group and help the assimilation group generalize their understanding of the concept because it 1) Gives the students ownership of their learning 2) Lets them act like actual scientists (backing claims with evidence) 3) Negotiation with peers makes the outcome of the argument more plausible than simply being told by the teacher (Kuhn, 2010). The entire lesson plan for this unit and many others aligned to the Next Generation Science Standards can be found at www.waverlyshellrockswh.weebly.com.

Sample of a five day progression for the described unit (assuming approximately one hour for each lesson).

Sample of a five day progression for the described unit (assuming approximately one hour for each lesson).

References

Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.

Hand, B. (2008). Introducing the science writing heuristic approach. In B. Hand (Ed.), Science inquiry, argument and language: A case for the science writing heuristic. Rotterdam, The Netherlands: Sense Publishers.

Hewson. P. W. (1992). Conceptual change in science teaching and teacher education. Paper presented at a meeting on “Research and Curriculum Development in Science Teaching,” under the auspices of the National Center for Educational Research, Documentation, and Assessment, Ministry for Education and Science, Madrid, Spain.

Keys, C., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary school. Journal of Research in Science Teaching, 36(10), 1065 – 1084.

Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5),1–15.

Posner, G., Strike, K. A., Hewson, P.W., & Gertzog, W.A. (1982) Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education. 66(2), 211-27.

Schoering, E. & Hand, B. (2013). Using Language Positively. How to Encourage Negotiation in the Classroom. Science and Children. 50 (9) p. 52-57.

National Research Council. (2009). How People Learn: Brain, Mind, Experience, and School. Commission on Behavioral and Social Sciences and Education National Research Council. Washington, DC: National Academies Press.

National Research Council. (2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press.

Next Generation Science Standards (2013). For States, By States. Washington, DC: The National Academies Press.

Norton-Meier, L., Hand, B., Hockenberry, L., & Wise, K. (2008). Questions, claims, and evidence: The important place of argument in children’s science writing. National Science Teacher Association Press.

Mason Kuhn is a 4th Grade Teacher at Shell Rock Elementary. Shell Rock, Iowa and is an EdD. Student at the University of Northern Iowa

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

Leave a Reply

LATEST POST

Accelerating into NGSS – A Statewide Rollout Series Now Accepting Registrations

Posted: Friday, January 19th, 2018

Are you feeling behind on the implementation of NGSS? Then Accelerating into NGSS – the Statewide Rollout event – is right for you!

WHO SHOULD ATTEND
If you have not experienced Phases 1-4 of the Statewide Rollout, or are feeling behind with the implementation of NGSS, the Accelerating Into NGSS Statewide Rollout will provide you with the greatest hits from Phases 1-4!

OVERVIEW
Accelerating Into NGSS Statewide Rollout is a two-day training geared toward grade K-12 academic coaches, administrators, curriculum leads, and teacher leaders. Check-in for the two-day rollout begins at 7:30 a.m., followed by a continental breakfast. Sessions run from 8:00 a.m. to 4:15 p.m. on Day One and from 8:00 a.m. to 3:30 p.m. on Day Two.

Cost of training is $250 per attendee. Fee includes all materials, continental breakfast, and lunch on both days. It is recommended that districts send teams of four to six, which include at least one administrator. Payment can be made by check or credit card. If paying by check, registration is NOT complete until payment has been received. All payments must be received prior to the Rollout location date you are attending. Paying by credit card secures your seat at time of registration. No purchase orders accepted. No participant cancellation refunds.

For questions or more information, please contact Amy Kennedy at akennedy@sjcoe.net or (209) 468-9027.

REGISTER

http://bit.ly/ACCELERATINGINTONGSS

DATES & LOCATIONS
MARCH 28-29, 2018
Host: San Mateo County Office of Education
Location: San Mateo County Office of Education, Redwood City

APRIL 10-11, 2018
Host: Orange County Office of Education
Location: Brandman University, Irvine

MAY 1-2, 2018
Host: Tulare County Office of Education
Location: Tulare County Office of Education, Visalia

MAY 3-4, 2018
Host: San Bernardino Superintendent of Schools
Location: West End Educational Service Center, Rancho Cucamonga

MAY 7-8, 2018
Host: Sacramento County Office of Education
Location: Sacramento County Office of Education Conference Center and David P. Meaney Education Center, Mather

JUNE 14-15, 2018
Host: Imperial County Office of Education
Location: Imperial Valley College, Imperial

Presented by the California Department of Education, California County Superintendents Educational Services Association/County Offices of Education, K-12 Alliance @WestEd, California Science Project, and the California Science Teachers Association.

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

The Teaching and Learning Collaborative, Reflections from an Administrator

Posted: Friday, January 19th, 2018

by Kelly Patchen

My name is Mrs. Kelly Patchen, and I am proud to be an elementary assistant principal working in the Tracy Unified School District (TUSD) at Louis Bohn and McKinley Elementary Schools. Each of the schools I support are Title I K-5 schools with about 450 students, a diverse student population, a high percentage of English Language Learners, and students living in poverty. We’re also lucky to be part of the CA NGSS K-8 Early Implementation Initiative with the K-12 Alliance. Learn More…

Powered By DT Author Box

Written by NGSS Early Implementer

NGSS Early Implementer

In 2015 CSTA began to publish a series of articles written by teachers participating in the California NGSS k-8 Early Implementation Initiative. This article was written by an educator(s) participating in the initiative. CSTA thanks them for their contributions and for sharing their experience with the science teaching community.

2018 CSTA Conference Call for Proposals

Posted: Wednesday, January 17th, 2018

CSTA is pleased to announce that we are now accepting proposals for 90-minute workshops and three- and six-hour short courses for the 2018 California Science Education Conference. Workshops and short courses make up the bulk of the content and professional learning opportunities available at the conference. In recognition of their contribution, members who present a workshop or short course receive 50% off of their registration fees. Click for more information regarding proposals, or submit one today by following the links below.

Short Course Proposal

Workshop Proposal Learn More…

Written by California Science Teachers Association

California Science Teachers Association

CSTA represents science educators statewide—in every science discipline at every grade level, Kindergarten through University.

CSTA’s New Administrator Facebook Group Page

Posted: Monday, January 15th, 2018

by Holly Steele

The California Science Teachers Association’s mission is to promote high-quality science education, and one of the best practice’s we use to fulfill that mission is through the use of our Facebook group pages. CSTA hosts several closed and moderated Facebook group pages for specific grade levels, (Elementary, Middle, and High School), pages for district coaches and science education faculty, and the official CSTA Facebook page. These pages serve as an online resource for teachers and coaches to exchange teaching methods, materials, staying update on science events in California and asking questions. CSTA is happy to announce the creation of a 6th group page called, California Administrators Supporting Science. Learn More…

Written by Guest Contributor

From time to time CSTA receives contributions from guest contributors. The opinions and views expressed by these contributors are not necessarily those of CSTA. By publishing these articles CSTA does not make any endorsements or statements of support of the author or their contribution, either explicit or implicit. All links to outside sources are subject to CSTA’s Disclaimer Policy: http://www.classroomscience.org/disclaimer.

Find Your Reason to Engage

Posted: Monday, January 15th, 2018

by Jill Grace

I was recently reflecting on events in the news and remembered that several years ago, National Public Radio had a story about a man named Stéphane Hessel, a World War II French resistance fighter, Nazi concentration camp survivor, and contributor to the United Nation’s Universal Declaration of Human Rights. The story focused on a book he had published, Time for Outrage (2010).

In it, Hessel makes the argument that the worst attitude is indifference:

“Who is in charge; who are the decision makers? It’s not always easy to discern. We’re not dealing with a small elite anymore, whose actions we can clearly identify. We are dealing with a vast, interdependent world that is interconnected in unprecedented ways. But there are unbearable things all around us. You have to look for them; search carefully. Open your eyes and you will see. This is what I tell young people: If you spend a little time searching, you will find your reasons to engage. The worst attitude is indifference. ‘There’s nothing I can do; I get by’ – adopting this mindset will deprive you of one of the fundamental qualities of being human: outrage.  Our capacity for protest is indispensable, as is our freedom to engage.”

His words make me take pause when I think of the status of science in the United States. A general “mistrust” of science is increasingly pervasive, as outlined in a New Yorker article from the summer of 2016. Learn More…

Powered By DT Author Box

Written by Jill Grace

Jill Grace

Jill Grace is a Regional Director for the K-12 Alliance and is President of CSTA.